Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 232(10): 2710-2721, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27869308

RESUMEN

Ear is a sensitive organ involved in hearing and balance function. The complex signaling network in the auditory system plays a crucial role in maintaining normal physiological function of the ear. The inner ear comprises a variety of host signaling pathways working in synergy to deliver clear sensory messages. Any disruption, as minor as it can be, has the potential to affect this finely tuned system with temporary or permanent sequelae including vestibular deficits and hearing loss. Mutations linked to auditory symptoms, whether inherited or acquired, are being actively researched for ways to reverse, silence, or suppress them. In this article, we discuss recent advancements in understanding the pathways involved in auditory system signaling, from hair cell development through transmission to cortical centers. Our review discusses Notch and Wnt signaling, cell to cell communication through connexin and pannexin channels, and the detrimental effects of reactive oxygen species on the auditory system. There has been an increased interest in the auditory community to explore the signaling system in the ear for hair cell regeneration. Understanding signaling pathways in the auditory system will pave the way for the novel avenues to regenerate sensory hair cells and restore hearing function. J. Cell. Physiol. 232: 2710-2721, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Ciliadas Auditivas/metabolismo , Audición , Receptores Notch/metabolismo , Regeneración , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Vías Auditivas/metabolismo , Vías Auditivas/patología , Conexinas/metabolismo , Células Ciliadas Auditivas/patología , Humanos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , NADPH Oxidasas/metabolismo , Fenotipo
2.
Development ; 141(2): 399-409, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24381198

RESUMEN

The organ of Corti consists of sensory hair cells (HCs) interdigitated with nonsensory supporting cells (SCs) to form a checkerboard-like cellular pattern. HCs are equipped with hair bundles on their apical surfaces. We previously reported that cell-adhesive nectins regulate the checkerboard-like cellular patterning of HCs and SCs in the mouse auditory epithelium. Nectin-1 and -3 are differentially expressed in normal HCs and SCs, respectively, and in Nectin-3-deficient mice a number of HCs are aberrantly attached to each other. We show here that these aberrantly attached HCs in Nectin-3-deficient mice, but not unattached ones, show disturbances of the orientation and morphology of the hair bundles and the positioning of the kinocilium, with additional abnormal localisation of cadherin-catenin complexes and the apical-basal polarity proteins Pals1 and Par-3. These results indicate that, owing to the loss of Nectin-3, hair cells contact each other inappropriately and form abnormal junctions, ultimately resulting in abnormal hair bundle orientation and morphology.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Órgano Espiral/anomalías , Órgano Espiral/metabolismo , Animales , Proteínas Portadoras/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Polaridad Celular , Femenino , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nectinas , Órgano Espiral/embriología , Embarazo
3.
J Neurosci ; 30(9): 3473-81, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20203207

RESUMEN

Cisplatin is a chemotherapeutic agent that is widely used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was also capable of regeneration after cisplatin ototoxicity. Using cell and organ cultures of the chick cochlea and utricle, we found that cisplatin treatment caused apoptosis of both auditory and vestibular hair cells. Hair cell death in the cochlea occurred in a unique pattern, progressing from the low-frequency (distal) region toward the high-frequency (proximal) region. We also found that cisplatin caused a dose-dependent reduction in the proliferation of cultured supporting cells as well as increased apoptosis in those cells. As a result, we observed no recovery of hair cells after ototoxic injury caused by cisplatin. Finally, we explored the potential for nonmitotic hair cell recovery via activation of Notch pathway signaling. Treatment with the gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester failed to promote the direct transdifferentiation of supporting cells into hair cells in cisplatin-treated utricles. Taken together, our data show that cisplatin treatment causes maintained changes to inner ear supporting cells and severely impairs the ability of the avian ear to regenerate either via proliferation or by direct transdifferentiation.


Asunto(s)
Cisplatino/toxicidad , Oído Interno/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Regeneración Nerviosa/efectos de los fármacos , Neurotoxinas/toxicidad , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Sordera/inducido químicamente , Sordera/patología , Sordera/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Oído Interno/patología , Oído Interno/fisiopatología , Inhibidores Enzimáticos/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Células Ciliadas Vestibulares/efectos de los fármacos , Células Ciliadas Vestibulares/patología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/patología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Percepción de la Altura Tonal/efectos de los fármacos , Percepción de la Altura Tonal/fisiología , Receptores Notch/efectos de los fármacos , Receptores Notch/metabolismo
4.
Hear Res ; 385: 107838, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751832

RESUMEN

In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Comunicación Celular , Proliferación Celular , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Regeneración , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transdiferenciación Celular , Células Ciliadas Auditivas/patología , Movimientos de la Cabeza , Células Laberínticas de Soporte/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
5.
Hear Res ; 385: 107839, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760261

RESUMEN

Hair cells in the auditory organ of the vertebrate inner ear are the sensory receptors that convert acoustic stimuli into electrical signals that are conveyed along the auditory nerve to the brainstem. Hair cells are highly susceptible to ototoxic drugs, infection, and acoustic trauma, which can cause cellular degeneration. In mammals, hair cells that are lost after damage are not replaced, leading to permanent hearing impairments. By contrast, supporting cells in birds and other non-mammalian vertebrates regenerate hair cells after damage, which restores hearing function. The cellular mechanisms that regulate hair cell regeneration are not well understood. We investigated the role of vascular endothelial growth factor (VEGF) during regeneration of auditory hair cells in chickens after ototoxic injury. Using RNA-Seq, immunolabeling, and in situ hybridization, we found that VEGFA, VEGFC, VEGFR1, VEGFR2, and VEGFR3 were expressed in the auditory epithelium, with VEGFA expressed in hair cells and VEGFR1 and VEGFR2 expressed in supporting cells. Using organotypic cultures of the chicken cochlear duct, we found that blocking VEGF receptor activity during hair cell injury reduced supporting cell proliferation as well as the numbers of regenerated hair cells. By contrast, addition of recombinant human VEGFA to organ cultures caused an increase in both supporting cell division and hair cell regeneration. VEGF's effects on supporting cells were preserved in isolated supporting cell cultures, indicating that VEGF can act directly upon supporting cells. These observations demonstrate a heretofore uncharacterized function for VEGF signaling as a critical positive regulator of hair cell regeneration in the avian inner ear.


Asunto(s)
Proteínas Aviares/metabolismo , Proliferación Celular , Células Ciliadas Auditivas Internas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Regeneración , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Proteínas Aviares/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Pollos , Regulación de la Expresión Génica , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Mecanotransducción Celular , Regeneración/efectos de los fármacos , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
6.
Aging (Albany NY) ; 12(20): 19834-19851, 2020 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-33099273

RESUMEN

Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.


Asunto(s)
Transdiferenciación Celular , Factores de Transcripción Forkhead/deficiencia , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Factor de Transcripción SOX9/metabolismo , Sáculo y Utrículo/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/patología , Masculino , Ratones Noqueados , Neomicina/toxicidad , Proteínas del Tejido Nervioso/genética , Ototoxicidad , Fenotipo , Factor de Transcripción SOX9/genética , Sáculo y Utrículo/efectos de los fármacos , Sáculo y Utrículo/patología , Transducción de Señal
7.
Hear Res ; 373: 10-22, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578960

RESUMEN

In mammals, the cochlear sensory epithelium becomes quiescent early during development. After the first postnatal week, there is no cell replacement or proliferation, and severe damage leads to permanent deafness. Supporting cells' trans-differentiation has been suggested as a way to regenerate cochlear hair cells after damage. However, they are also needed for proper functionality. Cdkn1b (p27Kip1) participates in the cochlear terminal mitosis state achieved during development. Its expression is maintained in adult supporting cells and its postnatal deletion has induced cochlear proliferation in vitro and in vivo. Therefore, its manipulation has been proposed as a feasible way to induce proliferation of supporting cells after birth. Nevertheless, the literature is scarce regarding feasible methods to directly decrease p27Kip1 in the clinical domain. The effects of p27Kip1 knockdown using viral vectors are not completely elucidated and no pharmacological approaches to decrease p27Kip1 in the cochlea have been tested in vivo before. This study explores the ability of p27Kip1 messenger knockdown and pharmacological transcriptional inhibition to induce proliferation of supporting cells in the P0 neonatal rat cochlea in vivo. Respectively, lentiviral vectors transducing shRNA against p27Kip1 were administered into the scala media or Alsterpaullone 2-Cyanoethyl into the round window niche. Cell markers and gene expression were assessed through immunostaining and qRT-PCR. Despite both methods significantly decreasing p27Kip1 expression in vivo, signs of toxicity in the organ of Corti were not found; however, relevant proliferation was not found either. Finally, cochlear damage was added to increase the response in vitro, achieving only a mild to moderate proliferation induction. We conclude that our approaches were not able to stimulate the recall of supporting cell proliferation despite significantly decreased p27Kip1 levels in vivo. Considering the evaluation of the cochlea at a very responsive stage, we propose that the level of isolated modification of p27Kip1 expression in living mammals achievable through these approaches is insufficient to induce proliferation of supporting cells. Future proliferation induction experiments in the cochlea should study other methods and genes.


Asunto(s)
Proliferación Celular , Cóclea/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Laberínticas de Soporte/metabolismo , Animales , Animales Recién Nacidos , Benzazepinas/farmacología , Proliferación Celular/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo , Indoles/farmacología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Técnicas de Cultivo de Tejidos
8.
J Neurosci ; 27(19): 5163-71, 2007 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-17494702

RESUMEN

Little is known about the role of protein quality control in the inner ear. We now report selective cochlear degeneration in mice deficient in Fbx2, a ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins (Yoshida et al., 2002). Originally described as a brain-enriched protein (Erhardt et al., 1998), Fbx2 is also highly expressed in the organ of Corti, in which it has been called organ of Corti protein 1 (Thalmann et al., 1997). Mice with targeted deletion of Fbxo2 develop age-related hearing loss beginning at 2 months. Cellular degeneration begins in the epithelial support cells of the organ of Corti and is accompanied by changes in cellular membrane integrity and early increases in connexin 26, a cochlear gap junction protein previously shown to interact with Fbx2 (Henzl et al., 2004). Progressive degeneration includes hair cells and the spiral ganglion, but the brain itself is spared despite widespread CNS expression of Fbx2. Cochlear Fbx2 binds Skp1, the common binding partner for F-box proteins, and is an unusually abundant inner ear protein. Whereas cochlear Skp1 levels fall in parallel with the loss of Fbx2, other components of the canonical SCF (Skp1, Cullin1, F-box, Rbx1) ubiquitin ligase complex remain unchanged and show little if any complex formation with Fbx2/Skp1, suggesting that cochlear Fbx2 and Skp1 form a novel, heterodimeric complex. Our findings demonstrate that components of protein quality control are essential for inner ear homeostasis and implicate Fbx2 and Skp1 as potential genetic modifiers in age-related hearing loss.


Asunto(s)
Enfermedades Cocleares/metabolismo , Sordera/metabolismo , Proteínas F-Box/genética , Células Ciliadas Auditivas/metabolismo , Degeneración Nerviosa/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Enfermedades Cocleares/genética , Enfermedades Cocleares/fisiopatología , Conexina 26 , Conexinas/genética , Conexinas/metabolismo , Sordera/genética , Sordera/fisiopatología , Glicoproteínas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Sustancias Macromoleculares/metabolismo , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Unión Proteica/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
9.
Hear Res ; 364: 129-141, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29563067

RESUMEN

Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and ß-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.


Asunto(s)
Anoicis/efectos de los fármacos , Cóclea/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Herbicidas/toxicidad , Células Laberínticas de Soporte/efectos de los fármacos , Paraquat/toxicidad , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Caspasa 8/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , beta Catenina/metabolismo
10.
Hear Res ; 364: 1-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29754876

RESUMEN

Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Proliferación Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Regeneración/efectos de los fármacos , Animales , Antibacterianos/toxicidad , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/agonistas , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/farmacología , Comunicación Celular/efectos de los fármacos , Transdiferenciación Celular , Pollos , Femenino , Gentamicinas/toxicidad , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Masculino , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
11.
Hear Res ; 344: 158-169, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27890677

RESUMEN

From our permanent collection of plastic-embedded flat preparations of chinchilla cochleae, 22 controls and 199 ears from noise-exposed animals were used to determine when, postexposure, hair cell (HC) and supporting cell (SC) degeneration were completed. The exposed ears were divided into four groups based on exposure parameters: 0.5- or 4-kHz octave band of noise at moderate (M) or high (H) intensities. Postexposure survival ranged from <1 h to 2.5 y. Ears fixed ≤ 0-12 h postexposure were called 'acute'. For 'chronic' ears, postexposure survival was ≥7 d for groups 0.5M and 4M, ≥ 1 mo for the 4H group and ≥7 mo for the 0.5H group. The time course of inner-ear degeneration after noise exposure was determined from data in the 0.5H and 4H groups because these groups contained ears with intermediate survival times. Outer hair cells (OHCs) began dying during the exposure. OHC loss slowed down beyond 1 mo but was still present. Conversely, much inner hair cell loss was delayed until 1-3 wk postexposure. Outer pillar and inner pillar losses were present at a low level in acute ears but increased exponentially thereafter. These results are the first to demonstrate quantitatively that hair cells (HCs) and supporting cells (SCs) may continue to degenerate for months postexposure. With short postexposure survivals, the remaining SCs often had pathological changes, including: buckled pillar bodies, shifted Deiters' cell (DC) nuclei, detachment of DCs from the basilar membrane and/or splitting of the reticular lamina. These pathological changes appeared to allow endolymph and perilymph to intermix in the fluid spaces of the organ of Corti, damaging additional HCs, SCs and nerve fibers. This mechanism may account for some postexposure degeneration. In ears exposed to moderate noise, some of these SC changes appeared to be reversible. In ears exposed to high-level noise, these changes appeared to indicate impending degeneration.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/patología , Ruido/efectos adversos , Órgano Espiral/patología , Estimulación Acústica , Animales , Muerte Celular , Chinchilla , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Células Laberínticas de Soporte/patología , Degeneración Nerviosa , Factores de Tiempo
12.
Hear Res ; 352: 70-81, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28526177

RESUMEN

The cochlea and the vestibular organs are populated by resident macrophages, but their role in inner ear maintenance and pathology is not entirely clear. Resident macrophages in other organs are responsible for phagocytosis of injured or infected cells, and it is likely that macrophages in the inner ear serve a similar role. Hair cell injury causes macrophages to accumulate within proximity of damaged regions of the inner ear, either by exiting the vasculature and entering the labyrinth or by the resident macrophages reorganizing themselves through local movement to the areas of injury. Direct evidence for macrophage engulfment of apoptotic hair cells has been observed in several conditions. Here, we review evidence for phagocytosis of damaged hair cells in the sensory epithelium by tissue macrophages in the published literature and in some new experiments that are presented here as original work. Several studies also suggest that macrophages are not the only phaogocytic cells in the inner ear, but that supporting cells of the sensory epithelium also play an important role in debris clearance. We describe the various ways in which the sensory epithelia of the inner ear are adapted to eliminate damaged and dying cells. A collaborative effort between resident and migratory macrophages as well as neighboring supporting cells results in the rapid and efficient clearance of cellular debris, even in cases where hair cell loss is rapid and complete.


Asunto(s)
Apoptosis , Oído Interno/patología , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/patología , Macrófagos/patología , Fagocitosis , Animales , Movimiento Celular , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Humanos , Células Laberínticas de Soporte/metabolismo , Macrófagos/metabolismo , Ratones , Modelos Animales , Fenotipo , Transducción de Señal , Factores de Tiempo
13.
Hear Res ; 349: 182-196, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28034617

RESUMEN

Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.


Asunto(s)
Proliferación Celular , Cóclea/patología , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Provocada por Ruido/patología , Regeneración Nerviosa , Neurogénesis , Ruido/efectos adversos , Animales , Linaje de la Célula , Cóclea/metabolismo , Cóclea/fisiopatología , Epigénesis Genética , Regulación de la Expresión Génica , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/terapia , Humanos , Células Laberínticas de Soporte/patología , Personal Militar , Exposición Profesional/efectos adversos
14.
Hear Res ; 332: 17-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26688175

RESUMEN

Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration.


Asunto(s)
Antibacterianos/toxicidad , Linaje de la Célula/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Conducto Coclear/efectos de los fármacos , Gentamicinas/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Regeneración/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Embrión de Pollo , Pollos , Conducto Coclear/embriología , Conducto Coclear/metabolismo , Conducto Coclear/patología , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Mitosis/efectos de los fármacos , Factores de Tiempo
15.
Free Radic Biol Med ; 101: 211-225, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27769922

RESUMEN

Experimental and human investigations have raised the level of concern about the potential ototoxicity of organic solvents and their interaction with noise. The main objective of this study was to characterize the effects of the combined noise and styrene exposure on hearing focusing on the mechanism of damage on the sensorineural cells and supporting cells of the organ of Corti and neurons of the ganglion of Corti. The impact of single and combined exposures on hearing was evaluated by auditory functional testing and histological analyses of cochlear specimens. The mechanism of damage was studied by analyzing superoxide anion and lipid peroxidation expression and by computational analyses of immunofluorescence data to evaluate and compare the oxidative stress pattern in outer hair cells versus the supporting epithelial cells of the organ of Corti. The oxidative stress hypothesis was further analyzed by evaluating the protective effect of a Coenzyme Q10 analogue, the water soluble Qter, molecule known to have protective antioxidant properties against noise induced hearing loss and by the analysis of the expression of the endogenous defense enzymes. This study provides evidence of a reciprocal noise-styrene synergism based on a redox imbalance mechanism affecting, although with a different intensity of damage, the outer hair cell (OHC) sensory epithelium. Moreover, these two damaging agents address preferentially different cochlear targets: noise mainly the sensory epithelium, styrene the supporting epithelial cells. Namely, the increase pattern of lipid peroxidation in the organ of Corti matched the cell damage distribution, involving predominantly OHC layer in noise exposed cochleae and both OHC and Deiters' cell layers in the styrene or combined exposed cochleae. The antioxidant treatment reduced the lipid peroxidation increase, potentiated the endogenous antioxidant defense system at OHC level in both exposures but it failed to ameliorate the oxidative imbalance and cell death of Deiters' cells in the styrene and combined exposures. Current antioxidant therapeutic approaches to preventing sensory loss focus on hair cells alone. It remains to be seen whether targeting supporting cells, in addition to hair cells, might be an effective approach to protecting exposed subjects.


Asunto(s)
Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Externas/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/metabolismo , Células Laberínticas de Soporte/efectos de los fármacos , Ruido/efectos adversos , Estireno/toxicidad , Animales , Antioxidantes/farmacología , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/prevención & control , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
16.
J Assoc Res Otolaryngol ; 6(2): 136-47, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15952050

RESUMEN

In sensorineural hearing loss, hair cell loss is often followed by loss of cochlear nerve fibers, which can continue for years after the insult. The degree and time course of neuronal loss varies, but the reasons for this variation are unclear. The present study addresses this issue with a quantitative analysis of hair cell, supporting cell, and neuronal survival in animals with long-term survival of up to 5.5 years from two types of drug-induced hair cell loss: aminoglycoside antibiotics and platinum-containing chemotherapeutics. To complement the analysis of the effects of organ of Corti damage on neuronal survival, cases of primary neuronal degeneration, via auditory nerve section, are also assessed. Analysis shows that (1) long-term neuronal survival is enhanced when supporting cells in the inner hair cell (IHC) area remain intact; (2) after hair cell loss, the time course of neuronal loss is slower in the apex than in the base; (3) primary loss of cochlear nerve fibers does not lead to secondary degeneration of sensory cells or supporting cells in the organ of Corti; and (4) after auditory nerve section, there can be a massive reinnervation of the IHC region, especially in the apex. Results are consistent with the idea that supporting cells participate in the regulation of neuronal survival and neuronal sprouting in the organ of Corti.


Asunto(s)
Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/fisiopatología , Células Laberínticas de Soporte , Degeneración Nerviosa/fisiopatología , Neuronas , Aminoglicósidos , Animales , Carboplatino , Gatos , Supervivencia Celular , Chinchilla , Nervio Coclear/patología , Nervio Coclear/fisiopatología , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/etiología , Células Laberínticas de Soporte/patología , Fibras Nerviosas , Regeneración Nerviosa , Neuronas/patología
17.
Acta Otolaryngol ; 135(4): 328-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25761716

RESUMEN

CONCLUSION: Programmed cell death (PCD) initially starts in the support cells (SCs) after electrode insertion trauma (EIT), followed by PCD in hair cells (HCs). Activation of caspase-3 was observed only in SCs. Protecting both SCs and HCs with selective otoprotective drugs at an early stage post implantation may help to preserve residual hearing. OBJECTIVES: Cochlear implant EIT can initiate sensory cell losses via necrosis and PCD within the organ of Corti, which can lead to a loss of residual hearing. PCD appears to be a major factor in HC loss post-EIT. The current study aimed to: (1) determine the onset of PCD in both SCs and HCs within the traumatized organ of Corti; and (2) identify the molecular mechanisms active within the HCs and SCs that are undergoing PCD. METHODS: Adult guinea pigs were assigned to one of two groups: (1) EIT and (2) unoperated contralateral ears as controls. Immunostaining of dissected organ of Corti surface preparations for phosphorylated-Jun, cleaved caspase-3, and 4-hydroxy-2,3-nonenal (HNE) were performed at 6, 12, and 24 h post-EIT and for contralateral control ears. RESULTS: At 6 h post-EIT the SCs immunolabeled for the presence of phosphorylated-Jun and activated caspase-3. Phosphorylated p-Jun labeling was observed at 12 h in both the HCs and SCs of middle and basal cochlear turns. Cleaved caspase-3 was not observed in HCs of any cochlear turn at up to 24 h post-EIT. Lipid peroxidation (HNE immunostaining) was first observed at 12 h post-EIT in both the HCs and SCs of the basal turn, and reached the apical turn by 24 h post-EIT.


Asunto(s)
Apoptosis/fisiología , Implantación Coclear/efectos adversos , Implantes Cocleares/efectos adversos , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/patología , Transducción de Señal/fisiología , Aldehídos/metabolismo , Animales , Caspasa 3/metabolismo , Implantación Coclear/instrumentación , Modelos Animales de Enfermedad , Cobayas , Células Ciliadas Auditivas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Laberínticas de Soporte/metabolismo , Estrés Oxidativo/fisiología , Factores de Tiempo
18.
Sci Rep ; 5: 8619, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25726967

RESUMEN

Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Sordera/terapia , Dependovirus/metabolismo , Oído/patología , Neurotrofina 3/uso terapéutico , Envejecimiento , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Supervivencia Celular , Medios de Cultivo , Sordera/patología , Epitelio/metabolismo , Epitelio/patología , Femenino , Vectores Genéticos , Cobayas , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Masculino , Neomicina , Neurotrofina 3/genética , Perilinfa/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Resultado del Tratamiento
19.
Cell Death Dis ; 6: e1605, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25611380

RESUMEN

Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.


Asunto(s)
Células Ciliadas Auditivas/patología , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/patología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neomicina/efectos adversos , Oxidantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Complejo Represivo Polycomb 1/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Especies Reactivas de Oxígeno/metabolismo
20.
Neurosci Lett ; 334(3): 173-6, 2002 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-12453623

RESUMEN

The aim of this study was to examine roles of p27, a cyclin-dependent kinase inhibitor, in cochleae of adult mice. Expression of p27 was found in cochlear supporting cells and spiral ganglion neurons of normal mice. Cisplatin treatment caused progressive degeneration of cochlear supporting cells and spiral ganglion neurons, and numbers of p27-positive cells in these cells decreased. This indicates a close relationship between p27 and cell death in cochleae. However, the relationships between decrease in number of p27-positive cells and that of survival cells differed according to type of cell. For Deiters' cells, there was apparent decrease in number of p27-positive cells, although no decrease in cell numbers. The present findings indicate that p27 plays roles in degeneration of cochleae according to cell type.


Asunto(s)
Cóclea/metabolismo , Células Epiteliales/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Muerte Celular , Cisplatino/toxicidad , Cóclea/patología , Células Epiteliales/patología , Inmunohistoquímica , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Neuronas/patología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Órgano Espiral/patología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA