Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.345
Filtrar
Más filtros

Colección OPSURU
Intervalo de año de publicación
1.
Electrophoresis ; 45(1-2): 8-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37603373

RESUMEN

This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.


Asunto(s)
Electroforesis Capilar , Análisis de los Alimentos , Análisis de los Alimentos/métodos , Electroforesis Capilar/métodos , Calidad de los Alimentos , Polifenoles , Vitaminas/análisis , Aminas
2.
Anal Bioanal Chem ; 416(9): 2221-2246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37999723

RESUMEN

Solid-phase microextraction and comprehensive multidimensional gas chromatography represent two milestone innovations that occurred in the field of separation science in the 1990s. They have a common root in their introduction and have found a perfect coupling in their evolution and applications. This review will focus on food analysis, where the paradigm has changed significantly over time, moving from a targeted analysis, focusing on a limited number of analytes at the time, to a more holistic approach for assessing quality in a larger sense. Indeed, not only some major markers or contaminants are considered, but a large variety of compounds and their possible interaction, giving rise to the field of foodomics. In order to obtain such detailed information and to answer more sophisticated questions related to food quality and authenticity, the use of SPME-GC × GC-MS has become essential for the comprehensive analysis of volatile and semi-volatile analytes. This article provides a critical review of the various applications of SPME-GC × GC in food analysis, emphasizing the crucial role this coupling plays in this field. Additionally, this review dwells on the importance of appropriate data treatment to fully harness the results obtained to draw accurate and meaningful conclusions.


Asunto(s)
Análisis de los Alimentos , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Cromatografía de Gases , Cromatografía de Gases y Espectrometría de Masas/métodos , Calidad de los Alimentos , Compuestos Orgánicos Volátiles/análisis
3.
Public Health Nutr ; 27(1): e63, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297466

RESUMEN

OBJECTIVE: To compare the initial and the updated versions of the front-of-pack label Nutri-Score (related to the nutritional content) with the NOVA classification (related to the degree of food processing) at the food level. DESIGN: Using the OpenFoodFacts database - 129,950 food products - we assessed the complementarity between the Nutri-Score (initial and updated) with the NOVA classification through a correspondence analysis. Contingency tables between the two classification systems were used. SETTINGS: The food offer in France. PARTICIPANTS: Not applicable. RESULTS: With both versions (i.e. initial and updated) of the Nutri-Score, the majority of ultra-processed products received medium to poor Nutri-Score ratings (between 77·9 % and 87·5 % of ultra-processed products depending on the version of the algorithm). Overall, the update of the Nutri-Score algorithm led to a reduction in the number of products rated A and B and an increase in the number of products rated D or E for all NOVA categories, with unprocessed foods being the least impacted (-3·8 percentage points (-5·2 %) rated A or B and +1·3 percentage points (+12·9 %) rated D or E) and ultra-processed foods the most impacted (-9·8 percentage points (-43·4 %) rated A or B and +7·8 percentage points (+14·1 %) rated D or E). Among ultra-processed foods rated favourably with the initial Nutri-Score, artificially sweetened beverages, sweetened plant-based drinks and bread products were the most penalised categories by the revision of Nutri-Score while low-sugar flavoured waters, fruit and legume preparations were the least affected. CONCLUSION: These results indicate that the update of the Nutri-Score reinforces its coherence with the NOVA classification, even though both systems measure two distinct health dimensions at the food level.


Asunto(s)
Etiquetado de Alimentos , Edulcorantes , Humanos , Valor Nutritivo , Etiquetado de Alimentos/métodos , Manipulación de Alimentos , Calidad de los Alimentos
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155111

RESUMEN

Value is a foundational concept in reinforcement learning and economic choice theory. In these frameworks, individuals choose by assigning values to objects and learn by updating values with experience. These theories have been instrumental for revealing influences of probability, risk, and delay on choices. However, they do not explain how values are shaped by intrinsic properties of the choice objects themselves. Here, we investigated how economic value derives from the biologically critical components of foods: their nutrients and sensory qualities. When monkeys chose nutrient-defined liquids, they consistently preferred fat and sugar to low-nutrient alternatives. Rather than maximizing energy indiscriminately, they seemed to assign subjective values to specific nutrients, flexibly trading them against offered reward amounts. Nutrient-value functions accurately modeled these preferences, predicted choices across contexts, and accounted for individual differences. The monkeys' preferences shifted their daily nutrient balance away from dietary reference points, contrary to ecological foraging models but resembling human suboptimal eating in free-choice situations. To identify the sensory basis of nutrient values, we developed engineering tools that measured food textures on biological surfaces, mimicking oral conditions. Subjective valuations of two key texture parameters-viscosity and sliding friction-explained the monkeys' fat preferences, suggesting a texture-sensing mechanism for nutrient values. Extended reinforcement learning and choice models identified candidate neuronal mechanisms for nutrient-sensitive decision-making. These findings indicate that nutrients and food textures constitute critical reward components that shape economic values. Our nutrient-choice paradigm represents a promising tool for studying food-reward mechanisms in primates to better understand human-like eating behavior and obesity.


Asunto(s)
Preferencias Alimentarias , Calidad de los Alimentos , Nutrientes , Sensación/fisiología , Animales , Conducta de Elección , Metabolismo Energético , Fricción , Lípidos , Macaca mulatta , Masculino , Modelos Biológicos , Recompensa , Azúcares , Análisis y Desempeño de Tareas , Gusto , Viscosidad
5.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38610504

RESUMEN

Electronic nose devices stand out as pioneering innovations in contemporary technological research, addressing the arduous challenge of replicating the complex sense of smell found in humans. Currently, sensor instruments find application in a variety of fields, including environmental, (bio)medical, food, pharmaceutical, and materials production. Particularly the latter, has seen a significant increase in the adoption of technological tools to assess food quality, gradually supplanting human panelists and thus reshaping the entire quality control paradigm in the sector. This process is happening even more rapidly in the world of wine, where olfactory sensory analysis has always played a central role in attributing certain qualities to a wine. In this review, conducted using sources such as PubMed, Science Direct, and Web of Science, we examined papers published between January 2015 and January 2024. The aim was to explore prevailing trends in the use of human panels and sensory tools (such as the E-nose) in the wine industry. The focus was on the evaluation of wine quality attributes by paying specific attention to geographical origin, sensory defects, and monitoring of production trends. Analyzed results show that the application of E-nose-type sensors performs satisfactorily in that trajectory. Nevertheless, the integration of this type of analysis with more classical methods, such as the trained sensory panel test and with the application of destructive instrument volatile compound (VOC) detection (e.g., gas chromatography), still seems necessary to better explore and investigate the aromatic characteristics of wines.


Asunto(s)
Nariz Electrónica , Vino , Humanos , Control de Calidad , Calidad de los Alimentos , Geografía
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891814

RESUMEN

Copy number variation (CNV) serves as a significant source of genetic diversity in mammals and exerts substantial effects on various complex traits. Pingliang red cattle, an outstanding indigenous resource in China, possess remarkable breeding value attributed to their tender meat and superior marbling quality. However, the genetic mechanisms influencing carcass and meat quality traits in Pingliang red cattle are not well understood. We generated a comprehensive genome-wide CNV map for Pingliang red cattle using the GGP Bovine 100K SNP chip. A total of 755 copy number variable regions (CNVRs) spanning 81.03 Mb were identified, accounting for approximately 3.24% of the bovine autosomal genome. Among these, we discovered 270 potentially breed-specific CNVRs in Pingliang red cattle, including 143 gains, 73 losses, and 54 mixed events. Functional annotation analysis revealed significant associations between these specific CNVRs and important traits such as carcass and meat quality, reproduction, exterior traits, growth traits, and health traits. Additionally, our network and transcriptome analysis highlighted CACNA2D1, CYLD, UBXN2B, TG, NADK, and ITGA9 as promising candidate genes associated with carcass weight and intramuscular fat deposition. The current study presents a genome-wide CNV map in Pingliang red cattle, highlighting breed-specific CNVRs, and transcriptome findings provide valuable insights into the underlying genetic characteristics of Pingliang red cattle. These results offer potential avenues for enhancing meat quality through a targeted breeding program.


Asunto(s)
Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Carne , Animales , Bovinos/genética , Variaciones en el Número de Copia de ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Fenotipo , Cruzamiento , Genoma , Calidad de los Alimentos , Carácter Cuantitativo Heredable
7.
J Environ Manage ; 355: 120501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437746

RESUMEN

Damming of rivers poses a significant threat to freshwater ecosystems. Previous studies about the impact of damming on river ecosystems have mostly focused on large dams, with the impact of small dams largely unknown. Further, while the impacts of dams on aquatic communities have been widely studied, the effect on energy flow across river food webs remains unclear. In recent years, long-chain polyunsaturated fatty acid analysis (LC-PUFA) has emerged as a promising technique for assessing food quality and trophic interactions. In this study, LC-PUFA was applied to explore the nutritional effects of small dams on river food webs. A field investigation was conducted at upstream and downstream areas of three small dams in the headwaters of Dongjiang River, China, to evaluate the impact of small dams on the nutritional quality of basal food sources, and their consequent impacts on aquatic consumers and trophic links. Basal food sources (i.e., submerged leaves, macrophytes and periphyton) and aquatic consumers (i.e., macroinvertebrates and fish) were collected, and their fatty acid (FA) composition was measured. Our results showed that periphyton, rather than submerged leaves and macrophytes, was the primary high-quality food source for aquatic consumers, providing them with LC-PUFA, irrespective of whether sites were upstream or downstream. Damming the streams induced changes in aqueous nutrient concentrations (TP, PO4-P, DIN, and TN) from upstream to downstream of the dams, leading to significant variation in periphyton FA content. Compared with periphyton collected at downstream sites, periphyton at upstream sites contained higher LC-PUFA, but lower short-chain PUFA. Differences in periphyton LC-PUFA between the upstream and downstream areas of dams were reflected in the FA profiles of invertebrate grazers and filterers, and further transferred to fish. Furthermore, decreased periphyton nutritional quality at the downstream of the dams was one of the reasons for the simplification of stream food webs. Our results indicated that small dams negatively affected food webs, emphasizing the importance of high-quality food sources for stream ecosystems. We suggest that the trophic integrity of river food webs hinges on the dietary availability of periphyton supplying physiologically highly required nutrients for consumers and must thus not be compromised by damming of streams or other alterations.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Ríos , Agua Dulce , Ácidos Grasos , Calidad de los Alimentos
8.
J Sci Food Agric ; 104(12): 7027-7084, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38545907

RESUMEN

Provenance is becoming increasingly important in meat supply chains as it lends products higher perceived quality. However, its precise definition and interpretation along with its associated characteristics factors have remained somewhat elusive. This review meticulously defines meat provenance while dissecting the essential factors and associated quality attributes that constitute its essence and are subsequently employed to establish pertinent markers for provenance. Meat provenance emerges as a multi-dimensional construct stemming from the adept management of a constellation of factors relating to geographical origin, farm production system, traceability, and authenticity. Through intricate interactions, these factors unveil innate originality that not only forges a distinct reputation but also imparts a unique typicity to the meat product. Gaining insights into a meat product's provenance becomes attainable by scrutinizing its pertinent composition and organoleptic quality traits. Trace elements and stable isotopes stand out as provenance markers, forging a direct connection to both geographical origin and dietary sources. While somewhat less direct in linkage, other markers such as plant biomarkers, fatty acid composition, pH levels, flavour and aromatic compounds along with organoleptic characteristics contribute to the overall understanding of provenance. Additionally, the identification of animal species and breeds serves as key markers, particularly in the context of protected geographical indications. The study findings are useful for the various stakeholders of how the information for meat provenance can be linked with intrinsic and extrinsic factors for meat quality and protecting the integrity of the supply chain with special reference to traceability and authenticity. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Carne , Animales , Carne/análisis , Humanos , Biomarcadores/análisis , Control de Calidad , Calidad de los Alimentos
9.
Compr Rev Food Sci Food Saf ; 23(4): e13388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865218

RESUMEN

Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Alimentos Fermentados/microbiología , Microbiota , Calidad de los Alimentos , Bacterias
10.
Compr Rev Food Sci Food Saf ; 23(1): e13286, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284581

RESUMEN

Emerging nonthermal and thermal food processing technologies are a better alternative to conventional thermal processing techniques because they offer high-quality, minimally processed food. Texture is important in the food industry because it encompasses several product attributes and plays a vital role in consumer acceptance. Therefore, it is imperative to analyze the extent to which these technologies influence the textural attributes of food grains. Physical forces produced by cavitation are attributed to ultrasound treatment-induced changes in the conformational and structural properties of food proteins. Pulsed electric field treatment causes polarization of starch granules, damaging the dense outer layer of starch granules and decreasing the mechanical strength of starch. Prolonged radio frequency heating results in the denaturation of proteins and gelatinization of starch, thus reducing binding tendency during cooking. Microwave energy induces rapid removal of water from the product surface, resulting in lower bulk density, low shrinkage, and a porous structure. However, evaluating the influence of these techniques on food grain texture is difficult owing to differences in their primary operation mode, operating conditions, and equipment design. To maximize the advantages of nonthermal and thermal technologies, in-depth research should be conducted on their effects on the textural properties of different food grains while ensuring the selection of appropriate operating conditions for each food grain type. This article summarizes all recent developments in these emerging processing technologies for food grains, discusses their potential applications and drawbacks, and presents prospects for future developments in food texture enhancement.


Asunto(s)
Manipulación de Alimentos , Calidad de los Alimentos , Manipulación de Alimentos/métodos , Culinaria , Almidón/química , Grano Comestible
11.
Compr Rev Food Sci Food Saf ; 23(1): e13290, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284591

RESUMEN

Aquatic foods are nutritious, enjoyable, and highly favored by consumers. In recent years, young consumers have shown a preference for prefabricated food due to its convenience, nutritional value, safety, and increasing market share. However, aquatic foods are prone to microbial spoilage due to their high moisture content, protein content, and unsaturated fatty acids. Furthermore, traditional processing methods of aquatic foods can lead to issues such as protein denaturation, lipid peroxidation, and other food safety and nutritional health problems. Therefore, there is a growing interest in exploring new technologies that can achieve a balance between antimicrobial efficiency and food quality. This review examines the mechanisms of cold plasma, high-pressure processing, photodynamic inactivation, pulsed electric field treatment, and ultraviolet irradiation. It also summarizes the research progress in nonthermal physical field technologies and their application combined with other technologies in prefabricated aquatic food. Additionally, the review discusses the current trends and developments in the field of prefabricated aquatic foods. The aim of this paper is to provide a theoretical basis for the development of new technologies and their implementation in the industrial production of prefabricated aquatic food.


Asunto(s)
Manipulación de Alimentos , Conservación de Alimentos , Calidad de los Alimentos , Valor Nutritivo , Inocuidad de los Alimentos
12.
Compr Rev Food Sci Food Saf ; 23(3): e13343, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38629458

RESUMEN

Innovations in food packaging systems could meet the evolving needs of the market; emerging concepts of non-migrating technologies reduce the negative migration of preservatives from packaging materials, extend shelf life, and improve food quality and safety. Non-migratory packaging activates the surface of inert materials through pretreatment to generate different active groups. The preservative is covalently grafted with the resin of the pretreated packaging substrate through the graft polymerization of the monomer and the coupling reaction of the polymer chain. The covalent link not only provides the required surface properties of the material for a long time but also retains the inherent properties of the polymer. This technique is applied to the processing for durable, stable, and easily controllable packaging widely. This article reviews the principles of various techniques for packaging materials, surface graft modification, and performance characterization of materials after grafting modification. Potential applications in the food industry and future research trends are also discussed.


Asunto(s)
Embalaje de Alimentos , Almacenamiento de Alimentos , Embalaje de Alimentos/métodos , Polímeros/química , Calidad de los Alimentos
13.
Compr Rev Food Sci Food Saf ; 23(4): e13385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031741

RESUMEN

Rising consumer awareness, coupled with advances in sensor technology, is propelling the food manufacturing industry to innovate and employ tools that ensure the production of safe, nutritious, and environmentally sustainable products. Amidst a plethora of nondestructive techniques available for evaluating the quality attributes of both raw and processed foods, the challenge lies in determining the most fitting solution for diverse products, given that each method possesses its unique strengths and limitations. This comprehensive review focuses on baked goods, wherein we delve into recently published literature on cutting-edge nondestructive methods to assess their feasibility for Industry 4.0 implementation. Emphasizing the need for quality control modalities that align with consumer expectations regarding sensory traits such as texture, flavor, appearance, and nutritional content, the review explores an array of advanced methodologies, including hyperspectral imaging, magnetic resonance imaging, terahertz, acoustics, ultrasound, X-ray systems, and infrared spectroscopy. By elucidating the principles, applications, and impacts of these techniques on the quality of baked goods, the review provides a thorough synthesis of the most current published studies and industry practices. It highlights how these methodologies enable defect detection, nutritional content prediction, texture evaluation, shelf-life forecasting, and real-time monitoring of baking processes. Additionally, the review addresses the inherent challenges these nondestructive techniques face, ranging from cost considerations to calibration, standardization, and the industry's overreliance on big data.


Asunto(s)
Culinaria , Culinaria/métodos , Análisis de los Alimentos/métodos , Control de Calidad , Valor Nutritivo , Calidad de los Alimentos
14.
Compr Rev Food Sci Food Saf ; 23(5): e13413, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39137001

RESUMEN

The food industry is a significant contributor to carbon emissions, impacting carbon footprint (CF), specifically during the heat drying process. Conventional heat drying processes need high energy and diminish the nutritional value and sensory quality of food. Therefore, this study aimed to investigate the integration of artificial intelligence (AI) in food processing to enhance quality and reduce CF, with a focus on heat drying, a high energy-consuming method, and offer a promising avenue for the industry to be consistent with sustainable development goals. Our finding shows that AI can maintain food quality, including nutritional and sensory properties of dried products. It determines the optimal drying temperature for improving energy efficiency, yield, and life cycle cost. In addition, dataset training is one of the key challenges in AI applications for food drying. AI needs a vast and high-quality dataset that directly impacts the performance and capabilities of AI models to optimize and automate food drying.


Asunto(s)
Inteligencia Artificial , Huella de Carbono , Manipulación de Alimentos , Calidad de los Alimentos , Calor , Manipulación de Alimentos/métodos , Desecación/métodos
15.
Compr Rev Food Sci Food Saf ; 23(4): e13405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030791

RESUMEN

Frying is a popular cooking method that produces delicious and crispy foods but can also lead to oil degradation and the formation of health-detrimental compounds in the dishes. Chemical reactions such as oxidation, hydrolysis, and polymerization contribute to these changes. In this context, emerging technologies like ultrasound-assisted frying (USF) and microwave (MW)-assisted frying show promise in enhancing the quality and stability of frying oils and fried foods. This review examines the impact of these innovative technologies, delving into the principles of these processes, their influence on the chemical composition of oils, and their implications for the overall quality of fried food products with a focus on reducing oil degradation and enhancing the nutritional and sensory properties of the fried food. Additionally, the article initially addresses the various reactions occurring in oils during the frying process and their influencing factors. The advantages and challenges of USF and MW-assisted frying are also highlighted in comparison to traditional frying methods, demonstrating how these innovative techniques have the potential to improve the quality and stability of oils and fried foods.


Asunto(s)
Culinaria , Microondas , Culinaria/métodos , Calor , Ultrasonido , Calidad de los Alimentos , Ondas Ultrasónicas , Aceites de Plantas/química
16.
Compr Rev Food Sci Food Saf ; 23(3): e13339, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578165

RESUMEN

The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.


Asunto(s)
Puntos Cuánticos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Embalaje de Alimentos/métodos , Calidad de los Alimentos , Puntos Cuánticos/toxicidad
17.
Compr Rev Food Sci Food Saf ; 23(3): e13353, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38660747

RESUMEN

Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.


Asunto(s)
Pan , Dextranos , Glútenes , Almidón , Triticum , Pan/análisis , Pan/normas , Almidón/química , Glútenes/química , Dextranos/química , Triticum/química , Fermentación , Manipulación de Alimentos/métodos , Calidad de los Alimentos
18.
Compr Rev Food Sci Food Saf ; 23(3): e13369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767851

RESUMEN

Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.


Asunto(s)
Contaminación de Alimentos , Inocuidad de los Alimentos , Micotoxinas , Nanopartículas , Micotoxinas/análisis , Micotoxinas/química , Nanopartículas/química , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos/métodos , Aptámeros de Nucleótidos/química , Calidad de los Alimentos , Técnicas Biosensibles/métodos
19.
Ecol Lett ; 26(1): 99-110, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36366786

RESUMEN

The pace-of-life syndrome hypothesis provides a framework for the adaptive integration of behaviour, physiology and life history between and within species. It suggests that behaviours involving a risk of death or injury should co-vary with a higher allocation to fast reproduction. Empirical support for this hypothesis is mixed, presumably because important influencing factors such as environmental variation, are usually neglected. By experimentally manipulating food quality of wild mice living under semi-natural conditions for three generations, we show that individuals adjust their life history strategies and risk-taking behaviours as well as trait covariation (Nindividuals  = 1442). These phenotypic differences are correlated to differences in transcriptomic gene expression of primary metabolic processes in the liver while no changes in gene frequencies occurred. Our discussion emphasises the need to integrate the role of environmental conditions and phenotypic plasticity in shaping relationships among behaviour, physiology and life history in response to changing environmental conditions.


Asunto(s)
Rasgos de la Historia de Vida , Reproducción , Animales , Ratones , Calidad de los Alimentos , Expresión Génica , Asunción de Riesgos
20.
Crit Rev Food Sci Nutr ; 63(26): 8173-8193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35319312

RESUMEN

Food products, especially those with high value-added, are commonly subjected to strict quality controls, which are of paramount importance, especially for attesting to some peculiar features related, for instance, to their geographical origin and/or the know-how of their producers. However, the sophistication of fraudulent practices requires a continuous update of analytical platforms. Different analytical techniques have become extremely appealing since the instrumental analysis tools evolution has substantially improved the capability to reveal and understand the complexity of food. In light of this, multi-elemental composition has been successful implemented solving a plethora of food authentication and traceability issues. In the last decades, it has existed an ever-increasing trend in analysis based on spectrometry analytical platforms in order to obtain a multi-elemental profile that combined with chemometrics have been noteworthy analytical methodologies able to solve these problems. This review provides an overview of published reports in the last decade (from 2011 to 2021) on food authentication and quality control from their multi-element composition in order to evaluate the state-of-the-art of this field and to identify the main characteristics of applied analytical techniques and chemometric data treatments that have permit achieve accurate discrimination/classification models, highlighting the strengths and the weaknesses of these methodologies.


Asunto(s)
Quimiometría , Alimentos , Análisis Espectral , Calidad de los Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA