Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 94(15): 5875-5882, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35389207

RESUMEN

Affinity chromatography utilizing specific interactions between therapeutic proteins and bead-immobilized capturing agents is a standard method for protein purification, but its scalability is limited by long purification times, activity loss by the capturing molecules and/or purified protein, and high costs. Here, we report a platform for purifying therapeutic antibodies via affinity precipitation using the endogenous calcium ion-binding protein, calsequestrin (CSQ), which undergoes a calcium ion-dependent phase transition. In this method, ZZ-CSQ fusion proteins with CSQ and an affinity protein (Z domain of protein A) capture antibodies and undergo multimerization and subsequent aggregation in response to calcium ions, enabling the antibody to be collected by affinity precipitation. After robustly validating and optimizing the performance of the platform, the ZZ-CSQ platform can rapidly purify therapeutic antibodies from industrial harvest feedstock with high purity (>97%) and recovery yield (95% ± 3%). In addition, the ZZ-CSQ platform outperforms protein A-based affinity chromatography (PAC) in removing impurities, yielding ∼20-fold less DNA and ∼4.8-fold less host cell protein (HCP) contamination. Taken together, this platform is rapid, recyclable, scalable, and cost-effective, and it shows antibody-purification performance superior or comparable to that of the standard affinity chromatography method.


Asunto(s)
Calcio , Calsecuestrina , Anticuerpos/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio , Calsecuestrina/química , Calsecuestrina/genética , Calsecuestrina/metabolismo , Cromatografía de Afinidad/métodos , Proteína Estafilocócica A/metabolismo
2.
Br Poult Sci ; 57(2): 151-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26953612

RESUMEN

Sudden death syndrome (SDS) in broilers is a cardiac disease associated with ventricular tachycardia (VT) and ventricular fibrillation (VF); however, its pathogenesis at the molecular level is not precisely determined. Downregulation and mutations of calsequestrin 2 (CASQ2), a major intracellular Ca(2+) buffer, have been associated with VT and sudden cardiac death (SCD) in humans but in chickens there is no report describing CASQ2 abnormalities in cardiac diseases. In order to better understand the molecular mechanisms predisposing the myocardium to fatal arrhythmia in broilers, the mRNA expression level of chicken CASQ2 gene (chCASQ2) in the left ventricle of dead broilers with SDS was determined and compared to healthy broilers using quantitative real-time PCR (qPCR). To determine the probable mutations in chCASQ2, PCR and direct sequencing were also done. Results showed a reduction in chCASQ2 expression in broilers dead by SDS. Three novel mutations (K289R, P308S, D310H) which are absent in healthy broilers were observed in chCASQ2. It is concluded that susceptibility to fatal cardiac arrhythmia in SDS may be associated with changes in intracellular Ca(2+) balance due to mutation and downregulation of chCASQ2.


Asunto(s)
Proteínas Aviares/genética , Calsecuestrina/genética , Pollos , Muerte Súbita Cardíaca/veterinaria , Polimorfismo Genético , Enfermedades de las Aves de Corral/genética , Taquicardia Ventricular/veterinaria , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Calsecuestrina/química , Calsecuestrina/metabolismo , Pollos/genética , Pollos/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Muerte Súbita Cardíaca/etiología , Flujo Génico , Mutación , Miocardio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Taquicardia Ventricular/genética
3.
Biopolymers ; 103(1): 15-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25091206

RESUMEN

Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C-terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn-motif and DEXn-motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C-terminal motifs possess Ca(2+)-sensitivity and affect protein function. Sequence analysis shows that both the Dn- and DEXn-motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca(2+)-mediated folding suggesting that these disordered motifs are Ca(2+)-sensitivity. We generated chimeric proteins by swapping the C-terminal portions between CASQ1 and CASQ2. Our studies show that the C-terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C-terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca(2+)-sensitivity IDRs located at the back-to-back dimer interface influence isoform-specific Ca(2+)-dependent polymerization properties of CASQ.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Calsecuestrina/química , Isoformas de Proteínas/química , Dicroismo Circular , Polimerizacion , Estructura Terciaria de Proteína
4.
J Biol Chem ; 288(43): 31358-62, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24025332

RESUMEN

Calsequestrin (CASQ) is the major component of the sarcoplasmic reticulum (SR) lumen in skeletal and cardiac muscles. This calcium-binding protein localizes to the junctional SR (jSR) cisternae, where it is responsible for the storage of large amounts of Ca(2+), whereas it is usually absent, at least in its polymerized form, in the free SR. The retention of CASQ inside the jSR is due partly to its association with other jSR proteins, such as junctin and triadin, and partly to its ability to polymerize, in a high Ca(2+) environment, into an intricate gel that holds the protein in place. In this work, we shed some light on the still poorly described in situ structure of polymerized CASQ using detailed EM images from thin sections, with and without tilting, and from deep-etched rotary-shadowed replicas. The latter directly illustrate the fundamental network nature of polymerized CASQ, revealing repeated nodal points connecting short segments of the linear polymer.


Asunto(s)
Proteínas Anfibias/química , Calcio/química , Calsecuestrina/química , Multimerización de Proteína/fisiología , Proteínas Anfibias/metabolismo , Animales , Calcio/metabolismo , Calsecuestrina/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocardio/química , Miocardio/metabolismo , Estructura Cuaternaria de Proteína , Rana pipiens , Serpientes
5.
Protein Sci ; 33(8): e5066, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39074259

RESUMEN

Affinity precipitation is an attractive method for protein purification due to its many advantages, including the rapid capture of target proteins, simple processing, high specificity, and ease of scale-up. We previously reported a robust antibody purification method using Ca2+-dependent precipitation of ZZ-hCSQ2, a fusion protein of human calsequestrin 2, and the antibody-binding protein ZZ. However, the stability of this fusion protein was not sufficiently high for industrial use because the antibody recovery yield decreased to 60% after being reused 10 times. To identify a more stable calsequestrin (CSQ), we calculated Rosetta energy values for the folding stabilities of various CSQ homologs and selected human CSQ1 (hCSQ1) with lowest energy value (-992.6) as the new CSQ platform. We also identified that the linker sequence between ZZ and CSQ was vulnerable to proteases and alkaline pH by N-terminal protein sequencing. Therefore, we changed the linker to four asparagine (4N) sequences, which were shorter and less flexible than the previous glycine-rich linker. The new version of ZZ-CSQ, ZZ-4N-hCSQ1, was stable in a protease-containing conditioned medium obtained from the cultured Chinese hamster ovary cell or high pH condition (0.1M sodium hydroxide) for more than 5 days and could be reused at least 25 times for antibody purification without loss of recovery yield. The antibodies purified by ZZ-4N-hCSQ1 precipitation also showed greater purity (~33.6-fold lower host cell DNA and ~6.4-fold lower host cell protein) than those purified by protein A chromatography. These data suggest that ZZ-4N-hCSQ1 precipitation is more efficient and can achieve cost-effectiveness of up to 12.5-fold cheaper than previous antibody purification methods and can lower the production costs of therapeutic antibodies.


Asunto(s)
Calcio , Humanos , Calcio/química , Calsecuestrina/química , Calsecuestrina/genética , Calsecuestrina/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Estabilidad Proteica , Animales , Células CHO , Cricetulus , Precipitación Química
6.
J Biol Chem ; 287(14): 11592-601, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22337878

RESUMEN

Calsequestrin, the major calcium storage protein in both cardiac and skeletal muscle, binds large amounts of Ca(2+) in the sarcoplasmic reticulum and releases them during muscle contraction. For the first time, the crystal structures of Ca(2+) complexes for both human (hCASQ1) and rabbit (rCASQ1) skeletal calsequestrin were determined, clearly defining their Ca(2+) sequestration capabilities through resolution of high- and low-affinity Ca(2+)-binding sites. rCASQ1 crystallized in low CaCl(2) buffer reveals three high-affinity Ca(2+) sites with trigonal bipyramidal, octahedral, and pentagonal bipyramidal coordination geometries, along with three low-affinity Ca(2+) sites. hCASQ1 crystallized in high CaCl(2) shows 15 Ca(2+) ions, including the six Ca(2+) ions in rCASQ1. Most of the low-affinity sites, some of which are µ-carboxylate-bridged, are established by the rotation of dimer interfaces, indicating cooperative Ca(2+) binding that is consistent with our atomic absorption spectroscopic data. On the basis of these findings, we propose a mechanism for the observed in vitro and in vivo dynamic high-capacity and low-affinity Ca(2+)-binding activity of calsequestrin.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/metabolismo , Músculo Esquelético/metabolismo , Secuencia de Aminoácidos , Animales , Calsecuestrina/química , Cristalografía por Rayos X , Perros , Humanos , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Conejos , Dispersión de Radiación
7.
J Biol Chem ; 287(5): 3042-50, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22170046

RESUMEN

Calsequestrin (CASQ) serves as a major Ca(2+) storage/buffer protein in the sarcoplasmic reticulum (SR). When purified from skeletal muscle, CASQ1 is obtained in its glycosylated form. Here, we have confirmed the specific site and degree of glycosylation of native rabbit CASQ1 and have investigated its effect on critical properties of CASQ by comparison with the non-glycosylated recombinant form. Based on our comparative approach utilizing crystal structures, Ca(2+) binding capacities, analytical ultracentrifugation, and light-scattering profiles of the native and recombinant rabbit CASQ1, we propose a novel and dynamic role for glycosylation in CASQ. CASQ undergoes a unique degree of mannose trimming as it is trafficked from the proximal endoplasmic reticulum to the SR. The major glycoform of CASQ (GlcNAc(2)Man(9)) found in the proximal endoplasmic reticulum can severely hinder formation of the back-to-back interface, potentially preventing premature Ca(2+)-dependent polymerization of CASQ and ensuring its continuous mobility to the SR. Only trimmed glycans can stabilize both front-to-front and the back-to-back interfaces of CASQ through extensive hydrogen bonding and electrostatic interactions. Therefore, the mature glycoform of CASQ (GlcNAc(2)Man(1-4)) within the SR can be retained upon establishing a functional high capacity Ca(2+) binding polymer. In addition, based on the high resolution structures, we propose a molecular mechanism for the catecholaminergic polymorphic ventricular tachycardia (CPVT2) mutation, K206N.


Asunto(s)
Calcio/química , Calsecuestrina/química , Multimerización de Proteína/fisiología , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Calsecuestrina/genética , Calsecuestrina/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Glicosilación , Mutación Missense , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
8.
Mol Cell Biochem ; 377(1-2): 11-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23456435

RESUMEN

Calsequestrin-2 (CSQ2) is a resident glycoprotein of junctional sarcoplasmic reticulum that functions in the regulation of SR Ca(2+) release. CSQ2 is biosynthesized in rough ER around cardiomyocyte nuclei and then traffics transversely across SR subcompartments. During biosynthesis, CSQ2 undergoes N-linked glycosylation and phosphorylation by protein kinase CK2. In mammalian heart, CSQ2 molecules subsequently undergo extensive mannose trimming by ER mannosidase(s), a posttranslational process that often regulates protein breakdown. We analyzed the intact purified CSQ2 from mongrel canine heart tissue by electrospray mass spectrometry. The average molecular mass of CSQ2 in normal mongrel dogs was 46,306 ± 41 Da, corresponding to glycan trimming of 3-5 mannoses, depending upon the phosphate content. We tested whether CSQ2 glycan structures would be altered in heart tissue from mongrel dogs induced into heart failure (HF) by two very different experimental treatments, rapid ventricular pacing or repeated coronary microembolizations. Similarly dramatic changes in mannose trimming were found in both types of induced HF, despite the different cardiomyopathies producing the failure. Unique to all samples analyzed from HF dog hearts, 20-40 % of all CSQ2 contained glycans that had minimal mannose trimming (Man9,8). Analyses of tissue samples showed decreases in CSQ2 protein levels per unit levels of mRNA for tachypaced heart tissue, also indicative of altered turnover. Quantitative immunofluorescence microscopy of frozen tissue sections suggested that no changes in CSQ2 levels occurred across the width of the cell. We conclude that altered processing of CSQ2 may be an adaptive response to the myocardium under stresses that are capable of inducing heart failure.


Asunto(s)
Calsecuestrina/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Factor Natriurético Atrial/metabolismo , Calsecuestrina/química , Calsecuestrina/genética , Calsecuestrina/aislamiento & purificación , Conformación de Carbohidratos , Secuencia de Carbohidratos , Concanavalina A/química , Modelos Animales de Enfermedad , Perros , Retículo Endoplásmico Rugoso/metabolismo , Expresión Génica , Glicosilación , Células HEK293 , Ventrículos Cardíacos/metabolismo , Humanos , Mananos/metabolismo , Peso Molecular , Péptido Natriurético Encefálico/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectrometría de Masa por Ionización de Electrospray
9.
Biochem J ; 435(2): 391-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21265816

RESUMEN

CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.


Asunto(s)
Calsecuestrina/metabolismo , Cationes/metabolismo , Proteínas Mutantes/metabolismo , Miocardio/metabolismo , Taquicardia Ventricular/genética , Secuencia de Aminoácidos , Calcio/metabolismo , Calcio/farmacología , Calsecuestrina/química , Calsecuestrina/genética , Calsecuestrina/fisiología , Humanos , Metales Alcalinotérreos/metabolismo , Metales Alcalinotérreos/farmacología , Modelos Moleculares , Técnicas de Sonda Molecular , Datos de Secuencia Molecular , Proteínas Mutantes/análisis , Mutación Missense/fisiología , Conformación Proteica/efectos de los fármacos , Pliegue de Proteína , Multimerización de Proteína/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato , Taquicardia Ventricular/metabolismo
10.
Int J Mol Sci ; 13(11): 14326-43, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23203067

RESUMEN

Calsequestrin (CASQ) is a major Ca2+-storage/buffer protein present in the sarcoplasmic reticulum of both skeletal (CASQ1) and cardiac (CASQ2) muscles. CASQ has significant affinity for a number of pharmaceutical drugs with known muscular toxicities. Our approach, with in silico molecular docking, single crystal X-ray diffraction, and isothermal titration calorimetry (ITC), identified three distinct binding pockets on the surface of CASQ2, which overlap with 2-methyl-2,4-pentanediol (MPD) binding sites observed in the crystal structure. Those three receptor sites based on canine CASQ1 crystal structure gave a high correlation (R2 = 0.80) to our ITC data. Daunomycin, doxorubicin, thioridazine, and trifluoperazine showed strong affinity to the S1 site, which is a central cavity formed between three domains of CASQ2. Some of the moderate-affinity drugs and some high-affinity drugs like amlodipine and verapamil displayed their binding into S2 sites, which are the thioredoxin-like fold present in each CASQ domain. Docking predictions combined with dissociation constants imply that presence of large aromatic cores and less flexible functional groups determines the strength of binding affinity to CASQ. In addition, the predicted binding pockets for both caffeine and epigallocatechin overlapped with the S1 and S2 sites, suggesting competitive inhibition by these natural compounds as a plausible explanation for their antagonistic effects on cardiotoxic side effects.


Asunto(s)
Calsecuestrina/química , Preparaciones Farmacéuticas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Calsecuestrina/metabolismo , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Teoría Cuántica , Conejos
11.
Mol Cell Biochem ; 353(1-2): 195-204, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21416293

RESUMEN

Both cardiac and skeletal calsequestrin (CASQ2 and CASQ1) serve as a major Ca(2+) storage/buffer protein in the sarcoplasmic reticulum (SR) by sequestering and releasing large numbers of Ca(2+) ions during each muscular contraction and relaxation cycle. CASQ isolated from various species often exists in a phosphorylated form, but phosphorylation's role is not yet understood. Here, the authors identified two phosphorylation sites, Ser(385) and Ser(393), for the first time, in human CASQ2 (hCASQ2) by mass-spectroscopy and evaluated the consequences of such phosphorylation. Substitution of these two serines with phosphoserine-mimicking aspartic-acid residues results in a significant increase in helical content, solubility and Ca(2+)-binding capacity above 6 mM [Ca(2+)]. However, neither substitution of Ser(385) nor Ser(393) alone produce any significant changes. Based on the crystal structures of hCASQ2, Ca(2+) binding capacity data, turbidity, and light scattering profiles, it was propose that phosphorylation at these two positions produces a disorder-to-order or coil-to-helix transition of the C-terminus, which in turn provides a more stable network of polyanions. Therefore, considering all the previous reports and the new data, the observed dynamic in vivo phosphorylation of CASQ could provide the basis not only for effective regulation of Ca(2+) buffering capacity, but also for the junctional SR trafficking mechanism.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/química , Calsecuestrina/metabolismo , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , Calsecuestrina/genética , Dicroismo Circular , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Fosfoserina/química , Fosfoserina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Retículo Sarcoplasmático/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Serina/metabolismo , Difracción de Rayos X
12.
Cells ; 10(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34831044

RESUMEN

Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.


Asunto(s)
Calsecuestrina/metabolismo , Músculo Esquelético/metabolismo , Molécula de Interacción Estromal 2/metabolismo , Animales , Calcio/metabolismo , Calsecuestrina/química , Citosol/metabolismo , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/ultraestructura , Unión Proteica , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Cell Calcium ; 90: 102242, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574906

RESUMEN

Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.


Asunto(s)
Calsecuestrina/química , Calsecuestrina/genética , Secuencia de Aminoácidos , Animales , Calsecuestrina/metabolismo , Humanos , Iones , Modelos Biológicos , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/metabolismo
14.
Sci Rep ; 10(1): 18115, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093545

RESUMEN

Calsequestrin is among the most abundant proteins in muscle sarcoplasmic reticulum and displays a high capacity but a low affinity for Ca2+ binding. In mammals, calsequestrin is encoded by two genes, CASQ1 and CASQ2, which are expressed almost exclusively in skeletal and cardiac muscles, respectively. Phylogenetic analysis indicates that calsequestrin is an ancient gene in metazoans, and that the duplication of the ancestral calsequestrin gene took place after the emergence of the lancelet. CASQ2 gene variants associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) in humans are positively correlated with a high degree of evolutionary conservation across all calsequestrin homologues. The mutations are distributed in diverse locations of the calsequestrin protein and impart functional diversity but remarkably manifest in a similar phenotype in humans.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/genética , Calsecuestrina/metabolismo , Cardiopatías/patología , Mutación , Filogenia , Secuencia de Aminoácidos , Animales , Señalización del Calcio , Calsecuestrina/química , Cardiopatías/genética , Cardiopatías/metabolismo , Humanos , Fenotipo , Conformación Proteica , Homología de Secuencia de Aminoácido
15.
Exp Mol Med ; 52(12): 1908-1925, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33288873

RESUMEN

Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.


Asunto(s)
Calsecuestrina/metabolismo , Músculo Esquelético/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/química , Calsecuestrina/genética , Susceptibilidad a Enfermedades , Acoplamiento Excitación-Contracción , Regulación de la Expresión Génica , Humanos , Fosforilación , Isoformas de Proteínas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Relación Estructura-Actividad
16.
Nat Struct Mol Biol ; 27(12): 1142-1151, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046906

RESUMEN

Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.


Asunto(s)
Calcio/química , Calsecuestrina/química , Miocardio/metabolismo , Taquicardia Ventricular/genética , Adulto , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calsecuestrina/genética , Calsecuestrina/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Genes Dominantes , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Mutación , Miocardio/patología , Linaje , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
17.
J Cell Biol ; 154(3): 525-34, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11489915

RESUMEN

Many proteins retained within the endo/sarcoplasmic reticulum (ER/SR) lumen express the COOH-terminal tetrapeptide KDEL, by which they continuously recycle from the Golgi complex; however, others do not express the KDEL retrieval signal. Among the latter is calsequestrin (CSQ), the major Ca2+-binding protein condensed within both the terminal cisternae of striated muscle SR and the ER vacuolar domains of some neurons and smooth muscles. To reveal the mechanisms of condensation and establish whether it also accounts for ER/SR retention of CSQ, we generated a variety of constructs: chimeras with another similar protein, calreticulin (CRT); mutants truncated of COOH- or NH2-terminal domains; and other mutants deleted or point mutated at strategic sites. By transfection in L6 myoblasts and HeLa cells we show here that CSQ condensation in ER-derived vacuoles requires two amino acid sequences, one at the NH2 terminus, the other near the COOH terminus. Experiments with a green fluorescent protein GFP/CSQ chimera demonstrate that the CSQ-rich vacuoles are long-lived organelles, unaffected by Ca2+ depletion, whose almost complete lack of movement may depend on a direct interaction with the ER. CSQ retention within the ER can be dissociated from condensation, the first identified process by which ER luminal proteins assume a heterogeneous distribution. A model is proposed to explain this new process, that might also be valid for other luminal proteins.


Asunto(s)
Calsecuestrina , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calreticulina , Calsecuestrina/química , Calsecuestrina/genética , Calsecuestrina/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mutagénesis Sitio-Dirigida/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transfección , Vacuolas/metabolismo
18.
Angew Chem Int Ed Engl ; 48(23): 4138-41, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19425025

RESUMEN

Seeing is sensing: Calsequestrin (CSQ) functionalized gold nanoparticles undergo calcium-dependent CSQ polymerization, which results in a clear color change (see picture) together with precipitation. The sensing system is specific for Ca(2+) ions and the differences between normal and disease-associated abnormal (hypercalcemia) Ca(2+) ion levels in serum can be distinguished with the naked eye.


Asunto(s)
Técnicas Biosensibles , Calcio/sangre , Calsecuestrina/química , Cationes Bivalentes/sangre , Oro/química , Nanopartículas del Metal/química , Calcio/química , Colorimetría , Humanos
19.
Neuron ; 5(5): 713-21, 1990 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2145879

RESUMEN

The presence and distribution of calsequestrin (CS), Ca2+ pump, and inositol 1,4,5-trisphosphate (IP3) receptor were investigated biochemically and immunologically in microsomal (P3) fractions isolated from chicken cerebrum and cerebellum. Two different batches of polyclonal antibodies specific for chicken skeletal muscle CS identified a Ca2+ binding, CS-like protein that was extremely enriched in cerebellum P3 fractions and absent from all cerebrum fractions. The cerebellum CS-like protein was deemed authentic CS because the N-terminal amino acid domain and peptide mapping were identical to those of skeletal muscle CS in the same species. CS was detected in striated muscles and cerebellum only. Cerebellum P3 fractions were also found to be considerably enriched in Ca2+ pump and IP3 receptor compared with the homologous cerebrum fractions, as judged by measurements of Ca2+ uptake, Ca2(+)-ATPase activity, IP3-induced Ca2+ release, and [3H]IP3 binding, respectively. Cerebellum microsomal fractions therefore appear to contain membrane fragments endowed with Ca2+ pump, IP3 receptor, and CS, i.e., three key components of a Ca2+ storage organelle.


Asunto(s)
Calcio/metabolismo , Calsecuestrina/metabolismo , Cerebelo/metabolismo , Inositol 1,4,5-Trifosfato/farmacología , Animales , ATPasas Transportadoras de Calcio/metabolismo , Calsecuestrina/química , Pollos , Técnicas Inmunológicas , Microsomas/metabolismo , Mapeo Peptídico , Distribución Tisular
20.
J Mol Biol ; 373(4): 1047-57, 2007 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17881003

RESUMEN

Mutations of conserved residues of human cardiac calsequestrin (hCSQ2), a high-capacity, low-affinity Ca2+-binding protein in the sarcoplasmic reticulum, have been associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). In order to understand the molecular mechanism and pathophysiological link between these CPVT-related missense mutations of hCSQ2 and the resulting arrhythmias, we generated three CPVT-causing mutants of hCSQ2 (R33Q, L167H, and D307H) and two non-pathological mutants (T66A and V76M) and investigated the effect of these mutations. In addition, we determined the crystal structure of the corresponding wild-type hCSQ2 to gain insight into the structural effects of those mutations. Our data show clearly that all three CPVT-related mutations lead to significant reduction in Ca2+-binding capacity in spite of the similarity of their secondary structures to that of the wild-type hCSQ2. Light-scattering experiments indicate that the Ca2+-dependent monomer-polymer transitions of the mutants are quite different, confirming that the linear polymerization behavior of CSQ is linked directly to its high-capacity Ca2+ binding. R33Q and D307H mutations result in a monomer that appears to be unable to form a properly oriented dimer. On the other hand, the L167H mutant has a disrupted hydrophobic core in domain II, resulting in high molecular aggregates, which cannot respond to Ca2+. Although one of the non-pathological mutants, T66A, shares characteristics with the wild-type, the other null mutant, V76M, shows significantly altered Ca2+-binding and polymerization behaviors, calling for careful reconsideration of its status.


Asunto(s)
Calsecuestrina/química , Calsecuestrina/genética , Mutación , Secuencia de Aminoácidos , Calcio/metabolismo , Calsecuestrina/metabolismo , Dicroismo Circular , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA