Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 559-579, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33492991

RESUMEN

Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Fluoruros/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Citoplasma/metabolismo , Fluoruros/toxicidad , Transporte Iónico , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nature ; 594(7863): 385-390, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135520

RESUMEN

Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules2. Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms3 to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/normas , Algoritmos , Aminoácidos/química , Anexina A5/química , Anexina A5/ultraestructura , Acuaporinas/química , Acuaporinas/ultraestructura , Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Conjuntos de Datos como Asunto , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular
3.
Nature ; 591(7849): 327-331, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597752

RESUMEN

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/ultraestructura , Animales , Encéfalo/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/ultraestructura , Cloruros/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Femenino , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Mutación , Oocitos , Conformación Proteica , Xenopus laevis
4.
Nature ; 588(7837): 350-354, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33149300

RESUMEN

The proton-activated chloride channel (PAC) is active across a wide range of mammalian cells and is involved in acid-induced cell death and tissue injury1-3. PAC has recently been shown to represent a novel and evolutionarily conserved protein family4,5. Here we present two cryo-electron microscopy structures of human PAC in a high-pH resting closed state and a low-pH proton-bound non-conducting state. PAC is a trimer in which each subunit consists of a transmembrane domain (TMD), which is formed of two helices (TM1 and TM2), and an extracellular domain (ECD). Upon a decrease of pH from 8 to 4, we observed marked conformational changes in the ECD-TMD interface and the TMD. The rearrangement of the ECD-TMD interface is characterized by the movement of the histidine 98 residue, which is, after acidification, decoupled from the resting position and inserted into an acidic pocket that is about 5 Å away. Within the TMD, TM1 undergoes a rotational movement, switching its interaction partner from its cognate TM2 to the adjacent TM2. The anion selectivity of PAC is determined by the positively charged lysine 319 residue on TM2, and replacing lysine 319 with a glutamate residue converts PAC to a cation-selective channel. Our data provide a glimpse of the molecular assembly of PAC, and a basis for understanding the mechanism of proton-dependent activation.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Microscopía por Crioelectrón , Activación del Canal Iónico , Técnicas de Placa-Clamp , Imagen Individual de Molécula , Aniones/metabolismo , Sitios de Unión , Canales de Cloruro/ultraestructura , Cloruros/metabolismo , Ácido Glutámico/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico , Lisina/metabolismo , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Rotación , Especificidad por Sustrato
5.
Physiol Rev ; 98(3): 1493-1590, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29845874

RESUMEN

CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory ß-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl- channels, whereas ClC-3 through ClC-7 are 2Cl-/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl- channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.


Asunto(s)
Canales de Cloruro/metabolismo , Animales , Canales de Cloruro/química , Canales de Cloruro/genética , Sordera/genética , Endocitosis , Endosomas/metabolismo , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Músculo Esquelético/metabolismo , Mutación , Miotonía/genética , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Osteopetrosis/genética
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197289

RESUMEN

Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.


Asunto(s)
Canales de Cloruro/química , Rayos Láser , Canales de Cloruro/metabolismo , Cristalografía , Citoplasma/metabolismo , Transporte Iónico , Luz , Conformación Proteica , Rayos X
7.
J Am Chem Soc ; 146(7): 4665-4679, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319142

RESUMEN

The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.


Asunto(s)
Canales de Cloruro , Cloruros , Humanos , Cloruros/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Mutación , Transducción de Señal , Calcio/metabolismo
8.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063037

RESUMEN

The opening of the Torpedo CLC-0 chloride (Cl-) channel is known to be regulated by two gating mechanisms: fast gating and slow (common) gating. The structural basis underlying the fast-gating mechanism is better understood than that of the slow-gating mechanism, which is still largely a mystery. Our previous study on the intracellular proton (H+i)-induced inhibition of the CLC-0 anionic current led to the conclusion that the inhibition results from the slow-gate closure (also called inactivation). The conclusion was made based on substantial evidence such as a large temperature dependence of the H+i inhibition similar to that of the channel inactivation, a resistance to the H+i inhibition in the inactivation-suppressed C212S mutant, and a similar voltage dependence between the current recovery from the H+i inhibition and the recovery from the channel inactivation. In this work, we further examine the mechanism of the H+i inhibition of wild-type CLC-0 and several mutants. We observe that an anion efflux through the pore of CLC-0 accelerates the recovery from the H+i-induced inhibition, a process corresponding to the slow-gate opening. Furthermore, various inactivation-suppressed mutants exhibit different current recovery kinetics, suggesting the existence of multiple inactivated states (namely, slow-gate closed states). We speculate that protonation of the pore of CLC-0 increases the binding affinity of permeant anions in the pore, thereby generating a pore blockage of ion flow as the first step of inactivation. Subsequent complex protein conformational changes further transition the CLC-0 channel to deeper inactivated states.


Asunto(s)
Canales de Cloruro , Activación del Canal Iónico , Protones , Canales de Cloruro/metabolismo , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/química , Canales de Cloruro/genética , Activación del Canal Iónico/efectos de los fármacos , Animales , Mutación , Cinética
9.
Nature ; 541(7638): 500-505, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28002411

RESUMEN

CLC proteins transport chloride (Cl-) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl- ions passively, whereas others are secondary active transporters that exchange two Cl- ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl- transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl- passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl-/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl- down its electrochemical gradient.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Microscopía por Crioelectrón , Animales , Células CHO , Bovinos , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Cricetulus , Citosol/metabolismo , Transporte Iónico , Cinética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Docilidad , Porosidad , Multimerización de Proteína , Protones
10.
Adv Exp Med Biol ; 1422: 279-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36988885

RESUMEN

Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.


Asunto(s)
Canales de Cloruro , Fosfatidilinositoles , Humanos , Canales de Cloruro/genética , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Anoctamina-1/metabolismo , Calcio/metabolismo , Colesterol , Canales de Calcio , Células HEK293
11.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33277431

RESUMEN

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Células CHO , Canales de Cloruro CLC-2 , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cricetulus , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Hipocampo/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad
12.
J Biol Chem ; 296: 100161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288678

RESUMEN

Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.


Asunto(s)
Canales de Cloruro/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Cadena B de alfa-Cristalina/química , Sitios de Unión , Carbocianinas/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Soluciones , Coloración y Etiquetado/métodos , Ácidos Sulfónicos/química , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
13.
Mol Phylogenet Evol ; 177: 107595, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35914647

RESUMEN

Most of Transmembrane protein 16 (TMEM16) family members function as either a Ca2+-activated Cl- channel (CaCC) or phospholipid scramblase (CaPLSase) and play diverse physiological roles. It is well conserved in eukaryotes; however, the origin and evolution of different subfamilies in Metazoa are not yet understood. To uncover the evolutionary history of the TMEM16 family, we analyzed 398 proteins from 74 invertebrate species using evolutionary genomics. We found that the TMEM16C-F and J subfamilies are vertebrate-specific, but the TMEM16A/B, G, H, and K subfamilies are ancient and present in many, but not all metazoan species. The most ancient subfamilies in Metazoa, TMEM16L and M, are only maintained in limited species. TMEM16N and O are Cnidaria- and Ecdysozoa-specific subfamilies, respectively, and Ctenophora, Xenacoelomorpha, and Rotifera contain species-specific proteins. We also identified TMEM16 genes that are closely linked together in the genome, suggesting that they have been generated via recent gene duplication. The anoctamin domain structures of invertebrate-specific TMEM16 proteins predicted by AlphaFold2 contain conserved Ca2+-binding motifs and permeation pathways with either narrow or wide inner gates. The inner gate distance of TMEM16 protein may have frequently switched during metazoan evolution, and thus determined the function of the protein as either CaCC or CaPLSase. These results demonstrate that TMEM16 family has evolved by gene gain and loss in metazoans, and the genes have been generally under purifying selection to maintain protein structures and physiological functions.


Asunto(s)
Anoctaminas , Proteínas de Transferencia de Fosfolípidos , Animales , Anoctaminas/genética , Anoctaminas/metabolismo , Canales de Cloruro/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Eucariontes/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Filogenia
14.
PLoS Biol ; 17(4): e3000218, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31022181

RESUMEN

ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue ("fast gate") known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-K and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-ß-synthase (CBS) domains and the intracellular vestibule ("slow gating"). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1-related diseases.


Asunto(s)
Canales de Cloruro/ultraestructura , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Microscopía por Crioelectrón/métodos , Humanos , Activación del Canal Iónico , Cinética , Potenciales de la Membrana , Modelos Moleculares
15.
Proc Natl Acad Sci U S A ; 116(35): 17345-17354, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31409705

RESUMEN

The CLC family of proteins are involved in a variety of physiological processes to control cellular chloride concentration. Two distinct classes of CLC proteins, Cl- channels and Cl-/H+ antiporters, have been functionally and structurally investigated over the last several decades. Previous studies have suggested that the conformational heterogeneity of the critical glutamate residue, Gluex, could explain the transport cycle of CLC-type Cl-/H+ antiporters. However, the presence of multiple conformations (Up, Middle, and Down) of the Gluex has been suggested from combined structural snapshots of 2 different CLC antiporters: CLC-ec1 from Escherichia coli and cmCLC from a thermophilic red alga, Cyanidioschyzon merolae Thus, we aimed to investigate further the heterogeneity of Gluex-conformations in CLC-ec1, the most deeply studied CLC antiporter, at both functional and structural levels. Here, we show that the crystal structures of the Gluex mutant E148D and wild-type CLC-ec1 with varying anion concentrations suggest a structural intermediate, the "Midlow" conformation. We also found that an extra anion can be located above the external Cl--binding site in the E148D mutant when the anion concentration is high. Moreover, we observed that a carboxylate in solution can occupy either the external or central Cl--binding site in the ungated E148A mutant using an anomalously detectable short carboxylic acid, bromoacetate. These results lend credibility to the idea that the Gluex can take at least 3 distinct conformational states during the transport cycle of a single CLC antiporter.


Asunto(s)
Aniones/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Ácido Glutámico/genética , Mutación , Sustitución de Aminoácidos , Antiportadores/química , Sitios de Unión , Transporte Biológico , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Ácido Glutámico/química , Modelos Moleculares , Conformación Molecular , Unión Proteica
16.
Hum Mutat ; 42(5): 537-550, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600050

RESUMEN

Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.


Asunto(s)
Enfermedad de Dent , Protones , Canales de Cloruro/química , Enfermedad de Dent/genética , Enfermedad de Dent/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X , Ácido Glutámico , Células HEK293 , Humanos , Nefrolitiasis
17.
Physiol Rev ; 94(2): 419-59, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692353

RESUMEN

TMEM16 proteins, also known as anoctamins, are involved in a variety of functions that include ion transport, phospholipid scrambling, and regulation of other membrane proteins. The first two members of the family, TMEM16A (anoctamin-1, ANO1) and TMEM16B (anoctamin-2, ANO2), function as Ca2+-activated Cl- channels (CaCCs), a type of ion channel that plays important functions such as transepithelial ion transport, smooth muscle contraction, olfaction, phototransduction, nociception, and control of neuronal excitability. Genetic ablation of TMEM16A in mice causes impairment of epithelial Cl- secretion, tracheal abnormalities, and block of gastrointestinal peristalsis. TMEM16A is directly regulated by cytosolic Ca2+ as well as indirectly by its interaction with calmodulin. Other members of the anoctamin family, such as TMEM16C, TMEM16D, TMEM16F, TMEM16G, and TMEM16J, may work as phospholipid scramblases and/or ion channels. In particular, TMEM16F (ANO6) is a major contributor to the process of phosphatidylserine translocation from the inner to the outer leaflet of the plasma membrane. Intriguingly, TMEM16F is also associated with the appearance of anion/cation channels activated by very high Ca2+ concentrations. Furthermore, a TMEM16 protein expressed in Aspergillus fumigatus displays both ion channel and lipid scramblase activity. This finding suggests that dual function is an ancestral characteristic of TMEM16 proteins and that some members, such as TMEM16A and TMEM16B, have evolved to a pure channel function. Mutations in anoctamin genes (ANO3, ANO5, ANO6, and ANO10) cause various genetic diseases. These diseases suggest the involvement of anoctamins in a variety of cell functions whose link with ion transport and/or lipid scrambling needs to be clarified.


Asunto(s)
Canales de Cloruro/metabolismo , Transducción de Señal , Animales , Canales de Cloruro/química , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Moduladores del Transporte de Membrana/farmacología , Mutación , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
18.
FASEB J ; 34(8): 9925-9940, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32725932

RESUMEN

The human chloride intracellular channel (hCLIC) family is thought to transition between globular and membrane-associated forms by exposure of a hydrophobic surface. However, the molecular identity of this surface, and the triggering events leading to its exposure, remain elusive. Here, by combining biochemical and structural approaches, together with mass spectrometry (MS) analyses, we show that hCLIC5 is inherently flexible. X-ray crystallography revealed the existence of a globular conformation, while small-angle X-ray scattering showed additional elongated forms consisting of exposure of the conserved hydrophobic inter-domain interface to the bulk phase. Tryptophan fluorescence measurements demonstrated that the transition to the membrane-associated form is enhanced by the presence of oxidative environment and lipids. Using MS, we identified a dose-dependent oxidation of a highly conserved cysteine residue, known to play a key role in the structurally related omega-class of glutathione-S-transferases. Hydrogen/deuterium exchange MS analysis revealed that oxidation of this cysteine facilitates the exposure of the conserved hydrophobic inter-domain interface. Together, our results pinpoint an oxidation of a specific cysteine residue as a triggering mechanism initializing the molecular commitment for membrane interaction in the CLIC family.


Asunto(s)
Membrana Celular/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
19.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806823

RESUMEN

Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Motilidad Espermática , Espermatozoides/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Canales de Cloruro/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Humanos , Canales Iónicos/genética , Masculino , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo , Relación Estructura-Actividad
20.
Angew Chem Int Ed Engl ; 60(19): 10833-10841, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624345

RESUMEN

The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.


Asunto(s)
Materiales Biomiméticos/química , Canales de Cloruro/química , Piridinas/química , Urea/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA