Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247493

RESUMEN

Cerebral SVDs encompass a group of genetic and sporadic pathological processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for SVDs, which progress silently for years before becoming clinically symptomatic. Here, we examine parallels in the functional defects of PAs in CADASIL, a monogenic form of SVD, and in response to SAH, a common type of hemorrhagic stroke that also targets the brain microvasculature. Both animal models exhibit dysregulation of the voltage-gated potassium channel, KV 1, in arteriolar myocytes, an impairment that compromises responses to vasoactive stimuli and impacts CBF autoregulation and local dilatory responses to neuronal activity (NVC). However, the extent to which this channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining experimental data with computational modeling, we describe the role of KV 1 channels in the regulation of myocyte membrane potential at rest and during the modest increase in extracellular potassium associated with NVC. We conclude that PA resting membrane potential and myogenic tone depend strongly on KV 1.2/1.5 channel density, and that reciprocal changes in KV channel density in CADASIL and SAH produce opposite effects on extracellular potassium-mediated dilation during NVC.


Asunto(s)
Microvasos/patología , Canales de Potasio con Entrada de Voltaje/análisis , Animales , CADASIL/fisiopatología , Dilatación , Humanos , Canales de Potasio con Entrada de Voltaje/fisiología , Hemorragia Subaracnoidea/fisiopatología
2.
Int J Mol Sci ; 15(7): 12940-51, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25054318

RESUMEN

Voltage-gated K+ channel (VKC) plays important roles in biology procession, especially in nervous system. Different subfamilies of VKCs have different biological functions. Thus, knowing VKCs' subfamilies has become a meaningful job because it can guide the direction for the disease diagnosis and drug design. However, the traditional wet-experimental methods were costly and time-consuming. It is highly desirable to develop an effective and powerful computational tool for identifying different subfamilies of VKCs. In this study, a predictor, called iVKC-OTC, has been developed by incorporating the optimized tripeptide composition (OTC) generated by feature selection technique into the general form of pseudo-amino acid composition to identify six subfamilies of VKCs. One of the remarkable advantages of introducing the optimized tripeptide composition is being able to avoid the notorious dimension disaster or over fitting problems in statistical predictions. It was observed on a benchmark dataset, by using a jackknife test, that the overall accuracy achieved by iVKC-OTC reaches to 96.77% in identifying the six subfamilies of VKCs, indicating that the new predictor is promising or at least may become a complementary tool to the existing methods in this area. It has not escaped our notice that the optimized tripeptide composition can also be used to investigate other protein classification problems.


Asunto(s)
Algoritmos , Biología Computacional , Canales de Potasio con Entrada de Voltaje/análisis , Bases de Datos de Proteínas , Internet , Oligopéptidos/química , Oligopéptidos/metabolismo , Máquina de Vectores de Soporte , Interfaz Usuario-Computador
3.
Am J Physiol Heart Circ Physiol ; 302(4): H910-22, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22180649

RESUMEN

KCNE2 functions as an auxiliary subunit in voltage-gated K and HCN channels in the heart. Genetic variations in KCNE2 have been linked to long QT syndrome. The underlying mechanisms are not entirely clear. One of the issues is whether KCNE2 protein is expressed in ventricles. We use adenovirus-mediated genetic manipulations of adult cardiac myocytes to validate two antibodies (termed Ab1 and Ab2) for their ability to detect native KCNE2 in the heart. Ab1 faithfully detects native KCNE2 proteins in spontaneously hypertensive rat and guinea pig hearts. In both cases, KCNE2 protein is more abundant in ventricles than in atria. In both ventricular and atrial myocytes, KCNE2 protein is preferentially distributed on the cell surface. Ab1 can detect a prominent KCNE2 band in human ventricular muscle from nonfailing hearts. The band intensity is much fainter in atria and in failing ventricles. Ab2 specifically detects S98 phosphorylated KCNE2. Through exploring the functional significance of S98 phosphorylation, we uncover a novel mechanism by which KCNE2 modulates the human ether-a-go-go related gene (hERG) current amplitude: by accelerating hERG protein degradation and thus reducing the hERG protein level on the cell surface. S98 phosphorylation appears to be required for this modulation, so that S98 dephosphorylation leads to an increase in hERG/rapid delayed rectifier current amplitude. Our data confirm that KCNE2 protein is expressed in the ventricles of human and animal models. Furthermore, KCNE2 can modulate its partner channel function not only by altering channel conductance and/or gating kinetics, but also by affecting protein stability.


Asunto(s)
Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteolisis , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Perros , Femenino , Cobayas , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Humanos , Masculino , Modelos Animales , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio con Entrada de Voltaje/análisis , Ratas , Ratas Endogámicas SHR , Canales de Potasio Shal , Regulador Transcripcional ERG
4.
J Obstet Gynaecol ; 32(7): 624-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22943705

RESUMEN

Human placental expression of K(V)9.3, a voltage-gated K channel linked to tissue oxygenation responses, has been suggested at the messenger RNA level but tissue localisation has not been described. We aimed to: (1) produce an antibody to human K(V)9.3 and (2) assess channel expression and distribution in human placental tissue. We determined human placental protein expression and localisation using an antibody to K(V)9.3. Antibody specificity was confirmed by Western blotting. Staining was observed in syncytiotrophoblast microvillous membrane, endothelial cells (in intermediate, stem villi and chorionic plate blood vessels) and vascular smooth muscle cells (large diameter vessels only) by immunohistochemistry. Expression was unchanged in tissue from women with small-for-gestational age babies. It was concluded that K(V)9.3 is localised to human placental vascular tissues and syncytiotrophoblast.


Asunto(s)
Placenta/química , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Especificidad de Anticuerpos , Antígenos/química , Antígenos/inmunología , Western Blotting , Células Endoteliales/química , Femenino , Expresión Génica , Edad Gestacional , Humanos , Inmunohistoquímica , Microvellosidades/química , Datos de Secuencia Molecular , Placenta/irrigación sanguínea , Canales de Potasio con Entrada de Voltaje/inmunología , Embarazo , ARN Mensajero/análisis , Conejos , Trofoblastos/química , Trofoblastos/ultraestructura
5.
Heart Vessels ; 26(3): 353-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20978892

RESUMEN

Delayed rectifier potassium currents such as I (Kr) and I (Ks) play an important role in the repolarization phase of the action potential in cardiac myocytes. Electrophysiological studies have shown that the pig is a useful animal not only for clinical use as a good candidate for humans, but also for basic research in heart function or arrhythmia. However, no studies concerning the potassium channels on a molecular level have been done. To elucidate the expression level and distribution of delayed rectifier potassium channels in pigs, we quantitatively investigated the I (Kr) and I (Ks) channel subunits using the real-time polymerase chain reaction (PCR) method. The hearts from Clawn miniature pigs were separated into the apical and basal regions, and subsequently excised into transmural trisections within each of the left ventricular walls, epicardium, midcardium, and endocardium. After RNA extraction from these sites, real-time PCR was executed with reverse transcriptional products for quantitative analysis. The expression level of KCNE1 was significantly higher than those of KCNQ1, KCNH2, and KCNE2, which were comparable in all sites. Transmural heterogeneity of these potassium channel subunits was not detected on the mRNA level. These results indicate that KCNE1 is a dominant subunit on the post-transcriptional level in the miniature pig.


Asunto(s)
Ventrículos Cardíacos/química , Canales de Potasio con Entrada de Voltaje/análisis , Análisis de Varianza , Animales , Canales de Potasio Éter-A-Go-Go/análisis , Regulación de la Expresión Génica , Canal de Potasio KCNQ1/análisis , Masculino , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Porcinos Enanos , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 105(33): 11697-702, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18687896

RESUMEN

Allosteric regulation of protein function is a fundamental phenomenon of major importance in many cellular processes. Such regulation is often achieved by ligand-induced conformational changes in multimeric proteins that may give rise to cooperativity in protein function. At the heart of allosteric mechanisms offered to account for such phenomenon, involving either concerted or sequential conformational transitions, lie changes in intersubunit interactions along the ligation pathway of the protein. However, structure-function analysis of such homooligomeric proteins by means of mutagenesis, although it provides valuable indirect information regarding (allosteric) mechanisms of action, it does not define the contribution of individual subunits nor interactions thereof to cooperativity in protein function, because any point mutation introduced into homooligomeric proteins will be present in all subunits. Here, we present a general strategy for the direct analysis of cooperativity in multisubunit proteins that combines measurement of the effects on protein function of all possible combinations of mutated subunits with analysis of the hierarchy of intersubunit interactions, assessed by using high-order double-mutant cycle-coupling analysis. We show that the pattern of high-order intersubunit coupling can serve as a discriminative criterion for defining concerted versus sequential conformational transitions underlying protein function. This strategy was applied to the particular case of the voltage-activated potassium channel protein (Kv) to provide compelling evidence for a concerted all-or-none activation gate opening of the Kv channel pore domain. An direct and detailed analysis of the contribution of high-order intersubunit interactions to cooperativity in the function of an allosteric protein has not previously been presented.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/metabolismo , Regulación Alostérica , Activación del Canal Iónico , Unión Proteica , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Termodinámica
7.
Proc Natl Acad Sci U S A ; 105(5): 1478-82, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18223154

RESUMEN

Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting alpha-subunits with specific regulatory beta-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of alpha- and beta-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K(+) channel inhibitor and its iterative application to tally the number of beta-subunits in a KCNQ1/KCNE1 K(+) channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K(+) channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE beta-subunit modulation of voltage-gated K(+) channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K(+) channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE beta-subunits.


Asunto(s)
Membrana Celular/química , Caribdotoxina/análogos & derivados , Disulfuros/farmacología , Canal de Potasio KCNQ1/análisis , Canales de Potasio con Entrada de Voltaje/análisis , Subunidades de Proteína/análisis , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Caribdotoxina/síntesis química , Caribdotoxina/química , Caribdotoxina/farmacología , Disulfuros/síntesis química , Disulfuros/química , Humanos , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/metabolismo , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Xenopus
8.
Biochem Biophys Res Commun ; 397(3): 614-20, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20570656

RESUMEN

Transient cerebral ischemia is known to induce endogenous mechanisms that can prevent or delay neuronal injury, such as the activation of mitochondrial potassium channels. However, the molecular mechanism of this effect remains unclear. In this study, the single-channel activity was measured using the patch-clamp technique of the mitoplasts isolated from gerbil hippocampus. In 70% of all patches, a potassium-selective current with the properties of a voltage-gated Kv-type potassium channel was recorded with mean conductance 109+/-6pS in a symmetrical solution. The channel was blocked at negative voltages and irreversibly by margatoxin, a specific Kv1.3 channel inhibitor. The ATP/Mg(2+) complex and Ca(2+) ions had no effect on channel activity. Additionally, agitoxin-2, a potent inhibitor of voltage-gated potassium channels, had no effect on mitochondrial channel activity. This observation suggests that in contrast to surface membrane channels, the mitochondrial voltage-gated potassium channel could have a different molecular structure with no affinity to agitoxin-2. Western blots of gerbil hippocampal mitochondria and immunohistochemistry on gerbil brain sections confirmed the expression of the Kv1.3 protein in mitochondria. Our findings indicate that gerbil brain mitochondria contain a voltage-gated potassium channel that can influence the function of mitochondria in physiological and pathological conditions and that has properties similar to the surface membrane Kv1.3 channel.


Asunto(s)
Hipocampo/metabolismo , Canal de Potasio Kv1.3/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Gerbillinae , Hipocampo/química , Canal de Potasio Kv1.3/análisis , Mitocondrias/química , Membranas Mitocondriales/química , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/análisis
9.
FEBS J ; 275(6): 1336-49, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18279388

RESUMEN

Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Anticuerpos/inmunología , Membrana Celular/metabolismo , Humanos , Inmunoprecipitación , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/genética , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Conejos , Distribución Tisular
10.
Mol Reprod Dev ; 75(4): 659-68, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18157847

RESUMEN

KCNE1, KCNA5 and KCNK5 have been identified, by using specific blockers, as K(+)-channels involved in sperm volume regulation under physiological conditions. All three channels were localised on the cytoplasmic droplets and tail of human ejaculated spermatozoa by fluorescence microscopy. Using flow cytometric quantification, KCNE1 was found to be present in 80% or more spermatozoa and KCNK5 in only about 20%, with KCNA5 expressed by 20-90% of cells. Whereas the extents of such protein expression did not differ statistically between semen donors and subfertile patients, the former group exhibited higher capacities for sperm volume regulation which were correlated with other sperm qualities including normal morphology and motile sperm number in the ejaculate. Channel identification was further confirmed at the protein level using Western blotting. RT-PCR analysis of testicular and sperm RNA of proven quality indicated the presence of Kcne1, Kcna5 and Kcnk5 transcripts. Subsequent sequencing of PCR products demonstrated that the nucleotide sequences of the entire encoding regions of Kcne1 and Kcnk5 were identical to those published in the database, whereas that of Kcna5 mRNA showed a single nucleotide synonymous deviation that agrees with the published genomic sequence. Quantitative real-time PCR analysis of sperm RNA revealed the amounts of Kcne1 > Kcna5 > Kcnk5, in the same order as for protein expression. Thus, KCNE1 is probably the major K(+)-channel involved in regulatory volume decrease in human spermatozoa, and channel activity is regulated beyond the extent of protein expression.


Asunto(s)
Canal de Potasio Kv1.5/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/genética , Espermatozoides/fisiología , Secuencia de Bases , Tamaño de la Célula , Citometría de Flujo , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/fisiología , Masculino , Datos de Secuencia Molecular , Canales de Potasio de Dominio Poro en Tándem/análisis , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/fisiología , ARN Mensajero/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Motilidad Espermática/fisiología , Espermatozoides/química , Espermatozoides/citología , Testículo/química , Testículo/fisiología
11.
Cardiovasc Res ; 73(1): 82-91, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17141204

RESUMEN

BACKGROUND: KCNE1 encodes an essential cardiac slow delayed-rectifier potassium current (I(Ks)) beta-subunit (minK). Varying minK expression is important in disease-related remodeling and species-dependent expression. This study addressed 5'-regulatory elements that potentially control KCNE1 transcription. METHODS AND RESULTS: The transcriptional start site of human KCNE1 (HKCNE1) was determined with 5'RACE. Of four isoforms, the putative promoter driving the isoforms constituting >80% expression in human hearts was further analyzed. A 1625-bp region 5' to the transcriptional start site was subcloned into luciferase-reporter plasmid (PGL3-Basic). The full promoter sequence increased luciferase expression 31-fold in neonatal rat cardiomyocytes (NRMs). A much smaller 327-bp core promoter maintained activity 21-29 fold. The core promoter conferred cardiomyocyte-preferential expression, with an activity in NRMs 4.9-fold greater than in Chinese Hamster Ovary cells (CHOs), compared to approximately 2.0 for the full-length promoter. Site-directed mutagenesis of all three GATA elements in the core promoter reduced its activity by >50% and attenuated cardiomyocyte-preferential expression. Mutagenesis of the second GATA element alone decreased promoter activity by approximately 50%. GATA4 knockdown with siRNA inhibited approximately 40% of core promoter activity in NRMs. Angiotensin-II increased HKCNE1 promoter activity, but only in the presence of intact GATA elements. The typically low-level I(Ks) expression in mouse and rabbit is related to low minK expression. Cloning of the mouse KCNE1 (MKCNE1) 5'-regulatory region showed approximately 50% sequence identity to human. MKCNE1 had only 1 GATA element in the region corresponding to the human core promoter and had less promoter activity (11.7 vs 29.0-fold PGL3-Basic for human). CONCLUSION: Promoter elements in the HKCNE1 5'-end, particularly GATA binding sites, may be important in tissue, disease and species-related transcriptional regulation of I(Ks).


Asunto(s)
Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Regiones no Traducidas 5' , Animales , Arritmias Cardíacas/metabolismo , Western Blotting/métodos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , ADN/análisis , Análisis Mutacional de ADN , Cartilla de ADN/genética , Factores de Transcripción GATA/genética , Silenciador del Gen , Humanos , Ratones , Canales de Potasio con Entrada de Voltaje/análisis , Isoformas de Proteínas/análisis , ARN/análisis , Interferencia de ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transcripción Genética
12.
Circ Res ; 97(12): 1280-7, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16269658

RESUMEN

Vascular smooth muscle cells (VSMCs) perform diverse functions that can be classified into contractile and synthetic (or proliferating). All of these functions can be fulfilled by the same cell because of its capacity of phenotypic modulation in response to environmental changes. The resting membrane potential is a key determinant for both contractile and proliferating functions. Here, we have explored the expression of voltage-dependent K+ (Kv) channels in contractile (freshly dissociated) and proliferating (cultured) VSMCs obtained from human uterine arteries to establish their contribution to the functional properties of the cells and their possible participation in the phenotypic switch. We have studied the expression pattern (both at the mRNA and at the protein level) of Kvalpha subunits in both preparations as well as their functional contribution to the K+ currents of VSMCs. Our results indicate that phenotypic remodeling associates with a change in the expression and distribution of Kv channels. Whereas Kv currents in contractile VSMCs are mainly performed by Kv1 channels, Kv3.4 is the principal contributor to K+ currents in cultured VSMCs. Furthermore, selective blockade of Kv3.4 channels resulted in a reduced proliferation rate, suggesting a link between Kv channels expression and phenotypic remodeling.


Asunto(s)
Proliferación Celular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Canales de Potasio con Entrada de Voltaje/fisiología , Útero/irrigación sanguínea , Células Cultivadas , Femenino , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Fenotipo , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína , ARN Mensajero/análisis , Canales de Potasio de la Superfamilia Shaker/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/fisiología , Canales de Potasio Shal/análisis , Canales de Potasio Shal/genética , Canales de Potasio Shaw/efectos de los fármacos , Canales de Potasio Shaw/genética , Canales de Potasio Shaw/fisiología , Compuestos de Tetraetilamonio/farmacología , Triterpenos/farmacología
13.
Circ Res ; 96(11): 1208-16, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15905459

RESUMEN

During pregnancy, the heart develops a reversible physiological hypertrophic growth in response to mechanical stress and increased cardiac output; however, underlying molecular mechanisms remain unknown. Here, we investigated pregnancy-related changes in heart structure, function, and gene expression of known markers of pathological hypertrophy and cell stretching in mice hearts. In late pregnancy, hearts show eccentric hypertrophy, as expected for a response to volume overload, with normal left ventricular diastolic function and a moderate reduction in systolic function. Pregnancy-related physiological heart hypertrophy does not induce expression changes of known markers of pathological hypertrophy like: alpha- and beta-myosin heavy chain, atrial natriuretic factor, phospholamban, and sarcoplasmic reticulum Ca2+-ATPase. Instead, it induces the remodeling of Kv4.3 channel and increased c-Src tyrosine kinase activity, a stretch-responsive kinase. Cardiac Kv4.3 channel gene expression was downregulated by approximately 3- to 5-fold, both at the mRNA and protein levels, and was paralleled by a reduction in transient outward K+ currents, a longer action potential and by prolongation of the QT interval. Downregulation of cardiac Kv4.3 transcripts was mimicked by estrogen treatment in ovariectomized mice, and was prevented by the estrogen receptor antagonist ICI 182,780. c-Src activity increased by approximately 2-fold in late pregnancy and after estrogen treatment. We propose that, in addition to mechanical stress, the rise of estrogen toward the end of pregnancy contributes to pregnancy-related heart hypertrophy by increased c-Src activity and that the rise of estrogen is one factor that down regulates cardiac Kv4.3 gene expression providing a molecular correlate for a longer QT interval in pregnancy.


Asunto(s)
Cardiomegalia/fisiopatología , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Potenciales de Acción , Animales , Proteína Tirosina Quinasa CSK , Cardiomegalia/etiología , Cardiomegalia/patología , Ecocardiografía , Electrocardiografía , Estradiol/análogos & derivados , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Fulvestrant , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Canales de Potasio/fisiología , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Embarazo , Complicaciones Cardiovasculares del Embarazo/etiología , Complicaciones Cardiovasculares del Embarazo/patología , Proteínas Tirosina Quinasas/metabolismo , Canales de Potasio Shal , Función Ventricular Izquierda , Familia-src Quinasas
14.
Hear Res ; 228(1-2): 31-43, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17346910

RESUMEN

Potassium channels play a critical role in defining the electrophysiological properties accounting for the unique response patterns of auditory neurons. Serial analysis of gene expression (SAGE), microarrays, RT-PCR, and real-time RT-PCR were used to generate a broad profile of potassium channel expression in the rat cochlear nucleus. This study identified mRNAs for 51 different potassium channel subunits or channel interacting proteins. The relative expression levels of 27 of these transcripts among the AVCN, PVCN, and DCN were determined by real-time RT-PCR. Four potassium channel transcripts showed substantial levels of differential expression. Kcnc2 was expressed more than 15-fold higher in the DCN as compared to AVCN and PVCN. In contrast, Kcnj13 had an approximate 10-fold higher expression in AVCN and PVCN than in DCN. Two subunits that modify the activity of other channels were inversely expressed between ventral and dorsal divisions. Kcns1 was over 15-fold higher in DCN than AVCN or PVCN, while Kcns3 was about 25-fold higher in AVCN than in DCN. The expression patterns of potassium channels in the subdivisions of the cochlear nucleus provide a basis for understanding the electrophysiological mechanisms which sub-serve central auditory processing and provide targets for further investigations into neural plastic changes that occur with hearing loss.


Asunto(s)
Núcleo Coclear/química , Expresión Génica , Canales de Potasio/análisis , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/análisis , Canales de Potasio con Entrada de Voltaje/análisis , ARN Mensajero/análisis , Ratas , Ratas Endogámicas BN , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shaw/análisis
15.
Chin Med J (Engl) ; 120(2): 150-4, 2007 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-17335661

RESUMEN

BACKGROUND: Atrial fibrillation is a common arrhythmia with multi-factorial pathogenesis. Recently, a single nucleotide polymorphism (G/T) at position 1057 in the KCNE4 gene, resulting in a glutamic acid (Glu, E)/aspartic acid (Asp, D) substitution at position 145 of the KCNE4 peptide, was found in our laboratory to be associated with idiopathic atrial fibrillation (atrial fibrillation more frequent with KCNE4 145D). However, the functional effect of the KCNE4 145E/D polymorphism is still unknown. METHODS: We constructed KCNE4 (145E/D) expression plasmids and transiently co-transfected them with the KCNQ1 gene into Chinese hamster ovary-K1 cells and performed whole-cell patch-clamping recording to identify the possible functional consequences of the single nucleotide polymorphism. Quantitative data were analyzed by Student;s t test. Probability values less than 0.05 were considered statistically significant. RESULTS: A slowly activating, non-inactivating voltage-dependent current ((24.0 +/- 2.9) pA/pF, at +60 mV)) could be recorded in the cells transfected with KCNQ1 alone. Co-expression of wild type KCNE4 inhibited the KCNQ1 current ((7.3 +/- 1.1) pA/pF)). By contrast, co-expression of KCNE4 (145D) augment the KCNQ1 current ((42.9 +/- 7) pA/pF)). The V(1/2) of activation for the KCNQ1/KCNE4 (145D) current was shifted significantly towards the depolarizing potential compared to that for the KCNQ1 current ((-2.3 +/- 0.2) mv vs (-13.0 +/- 1.5) mv, P < 0.01)) without changing the slope factorkappa. Furthermore, KCNE4 (145D) also affected the activation and deactivation kinetics of KCNQ1 channels. CONCLUSION: We provide experimental evidence that the KCNE4 (145E/D) polymorphism exerts the effect of "gain of function" on the KCNQ1 channel. It may underlie the genetic mechanism of atrial fibrillation. Further studies on the functional association between I(Ks) and KCNE4 (145D) polymorphism in cardiac myocytes are suggested.


Asunto(s)
Canal de Potasio KCNQ1/fisiología , Polimorfismo de Nucleótido Simple , Canales de Potasio con Entrada de Voltaje/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/fisiología
16.
Ann Acad Med Singap ; 36(6): 394-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17597962

RESUMEN

INTRODUCTION: Long QT syndrome (LQTS), an inherited cardiac arrhythmia, is a disorder of ventricular repolarisation characterised by electrocardiographic abnormalities and the onset of torsades de pointes leading to syncope and sudden death. Genetic polymorphisms in 5 well-characterised cardiac ion channel genes have been identified to be responsible for the disorder. The aim of this study is to identify disease-causing mutations in these candidate genes in a LQTS family. MATERIALS AND METHODS: The present study systematically screens the coding region of the LQTS-associated genes (KCNQ1, HERG, KCNE1, KCNE2 and SCN5A) for mutations using DNA sequencing analysis. RESULTS: The mutational analysis revealed 7 synonymous and 2 non-synonymous polymorphisms in the 5 ion channel genes screened. CONCLUSION: We did not identify any clear identifiable genetic marker causative of LQTS, suggesting the existence of LQTS-associated genes awaiting discovery.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Proteínas Musculares/genética , Polimorfismo Genético/genética , Canales de Potasio con Entrada de Voltaje/genética , Canales de Sodio/genética , Adolescente , Adulto , Niño , Análisis Mutacional de ADN , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/análisis , Femenino , Mutación del Sistema de Lectura , Humanos , Canal de Potasio KCNQ1/análisis , Masculino , Persona de Mediana Edad , Proteínas Musculares/análisis , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Sodio/análisis , Transactivadores
17.
Cardiovasc Res ; 71(1): 88-96, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16626671

RESUMEN

OBJECTIVE: Cardiac memory (CM) is characterized by an altered T-wave morphology, which reflects altered repolarization gradients. We hypothesized that the delayed rectifier currents, I(Kr) and I(Ks), might contribute to these repolarization changes. METHODS: We studied conscious, chronically instrumented dogs paced from the postero-lateral left ventricular (LV) wall at rates 5-10% faster than sinus rate for 3 weeks. ECGs during sinus rhythm were recorded on days 0, 7, 14 and 21 of pacing. Within 3 weeks, CM achieved steady state, hearts were excised, and epicardial and endocardial tissues and myocytes were studied. RESULTS: In unpaced controls, action potential duration to 50% and 90% repolarization (APD) in epicardium was shorter than in endocardium (P < 0.05); in CM epicardial APD increased at CL > or = 500 ms, while endocardial APD was either unchanged or decreased such that the transmural gradient seen in controls diminished (P < 0.05). A transmural I(Kr) gradient occurred in controls (epicardium>endocardium, P < 0.05) and was reversed in CM. No I(Ks) transmural gradient was found in controls, while in CM endocardial I(Ks) was greater than epicardial at greater than +50 mV. Canine ERG (cERG) mRNA and protein in epicardium > endocardium in controls (P < 0.05), and this difference was lost in CM. Expression levels of KCNQ1 and KCNE1 protein were similar in all groups. CONCLUSIONS: A transcriptionally induced change in epicardial I(Kr) contributes to the altered ventricular repolarization that characterizes CM.


Asunto(s)
Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Pericardio/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Western Blotting/métodos , Estimulación Cardíaca Artificial , Perros , Electrocardiografía , Endocardio/metabolismo , Endocardio/fisiología , Canales de Potasio Éter-A-Go-Go/análisis , Canales de Potasio Éter-A-Go-Go/genética , Ventrículos Cardíacos , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Pericardio/metabolismo , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Remodelación Ventricular
18.
Elife ; 62017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28470148

RESUMEN

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.


Asunto(s)
Axones/enzimología , Metabolismo de los Lípidos , Lisosomas/metabolismo , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Peroxisomas/metabolismo , Canales de Potasio con Entrada de Voltaje/análisis , Adrenoleucodistrofia/patología , Animales , Axones/ultraestructura , Modelos Animales de Enfermedad , Humanos , Ratones , Microscopía Electrónica , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/deficiencia
19.
J Neurosci ; 25(6): 1470-80, 2005 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-15703401

RESUMEN

How demyelination and remyelination affect the function of myelinated axons is a fundamental aspect of demyelinating diseases. We examined this issue in Trembler-J mice, a genetically authentic model of a dominantly inherited demyelinating neuropathy of humans. The K+ channels Kv1.1 and Kv1.2 channels were often improperly located in the paranodal axon membrane, typically associated with improperly formed paranodes, and in unmyelinated segments between internodes. As in wild-type nerves, Trembler-J nodes contained Nav1.6, ankyrin-G, betaIV-spectrin, and KCNQ2, but, unlike wild-type nerves, they also contained Kv3.1b and Nav1.8. In unmyelinated segments bordered by myelin sheaths, these proteins were clustered in heminodes and did not appear to be diffusely localized in the unmyelinated segments themselves. Nodes and heminodes were contacted by Schwann cells processes that did not have the ultrastructural or molecular characteristics of mature microvilli. Despite the presence of Nav1.8, a tetrodotoxin-resistant sodium channel, sciatic nerve conduction was at least as sensitive to tetrodotoxin in Trembler-J nerves as in wild-type nerves. Thus, the profound reorganization of axonal ion channels and the aberrant expression of novel ion channels likely contribute to the altered conduction in Trembler-J nerves.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Canales Iónicos/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sustitución de Aminoácidos , Animales , Axones/metabolismo , Membrana Celular/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Nervio Femoral/química , Nervio Femoral/ultraestructura , Canales Iónicos/análisis , Canal de Potasio KCNQ2 , Canal de Potasio Kv.1.2 , Masculino , Ratones , Ratones Mutantes Neurológicos , Modelos Animales , Mutación Missense , Proteínas de la Mielina/química , Proteínas de la Mielina/genética , Vaina de Mielina/patología , Canal de Sodio Activado por Voltaje NAV1.6 , Canal de Sodio Activado por Voltaje NAV1.8 , Proteínas del Tejido Nervioso/análisis , Conducción Nerviosa , Mutación Puntual , Canales de Potasio con Entrada de Voltaje/análisis , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/ultraestructura , Nervio Ciático/química , Nervio Ciático/ultraestructura , Canales de Potasio Shaw , Canales de Sodio/análisis , Espectrina/análisis , Tetrodotoxina/farmacología
20.
J Neurosci ; 25(6): 1459-69, 2005 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-15703400

RESUMEN

Endothelial differentiation gene (Edg) proteins are G-protein-coupled receptors activated by lysophospholipid mediators: sphingosine-1-phosphate (S1P) or lysophosphatidic acid. We show that in the CNS, expression of Edg8/S1P5, a high-affinity S1P receptor, is restricted to oligodendrocytes and expressed throughout development from the immature stages to the mature myelin-forming cell. S1P activation of Edg8/S1P5 on O4-positive pre-oligodendrocytes induced process retraction via a Rho kinase/collapsin response-mediated protein signaling pathway, whereas no retraction was elicited by S1P on these cells derived from Edg8/S1P5-deficient mice. Edg8/S1P5-mediated process retraction was restricted to immature cells and was no longer observed at later developmental stages. In contrast, S1P activation promoted the survival of mature oligodendrocytes but not of pre-oligodendrocytes. The S1P-induced survival of mature oligodendrocytes was mediated through a pertussis toxin-sensitive, Akt-dependent pathway. Our data demonstrate that Edg8/S1P5 activation on oligodendroglial cells modulates two distinct functional pathways mediating either process retraction or cell survival and that these effects depend on the developmental stage of the cell.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Lisofosfolípidos/farmacología , Proteínas del Tejido Nervioso/fisiología , Oligodendroglía/metabolismo , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Secuencia de Aminoácidos , Animales , Ancirinas/análisis , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Química Encefálica , Diferenciación Celular , Linaje de la Célula , Forma de la Célula/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Células Cultivadas/ultraestructura , Cruzamientos Genéticos , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Canal de Potasio Kv.1.1 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/ultraestructura , Fosforilación , Canales de Potasio con Entrada de Voltaje/análisis , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/análisis , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Receptores de Lisoesfingolípidos/deficiencia , Receptores de Lisoesfingolípidos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Esfingosina/farmacología , Quinasas Asociadas a rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA