Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.723
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 535-558, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556281

RESUMEN

Members of the mitochondrial carrier family [solute carrier family 25 (SLC25)] transport nucleotides, amino acids, carboxylic acids, fatty acids, inorganic ions, and vitamins across the mitochondrial inner membrane. They are important for many cellular processes, such as oxidative phosphorylation of lipids and sugars, amino acid metabolism, macromolecular synthesis, ion homeostasis, cellular regulation, and differentiation. Here, we describe the functional elements of the transport mechanism of mitochondrial carriers, consisting of one central substrate-binding site and two gates with salt-bridge networks on either side of the carrier. Binding of the substrate during import causes three gate elements to rotate inward, forming the cytoplasmic network and closing access to the substrate-binding site from the intermembrane space. Simultaneously, three core elements rock outward, disrupting the matrix network and opening the substrate-binding site to the matrix side of the membrane. During export, substrate binding triggers conformational changes involving the same elements but operating in reverse.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Agrecanos/química , Agrecanos/genética , Agrecanos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sitios de Unión , Transporte Biológico , Calcio/metabolismo , Cardiolipinas/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 184(12): 3178-3191.e18, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34022140

RESUMEN

Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Interacciones Huésped-Patógeno , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Shigella flexneri/fisiología , Ubiquitinación , Animales , Proteínas Bacterianas/metabolismo , Cardiolipinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Femenino , Granzimas/metabolismo , Humanos , Lípido A/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Viabilidad Microbiana , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Especificidad por Sustrato
3.
Immunity ; 56(11): 2523-2541.e8, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37924812

RESUMEN

Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.


Asunto(s)
Gasderminas , Piroptosis , Proteínas de Neoplasias/metabolismo , Cardiolipinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Inflamasomas/metabolismo
4.
Annu Rev Biochem ; 83: 79-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606142

RESUMEN

Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.


Asunto(s)
Lípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Cardiolipinas/química , Química Física , Biología Computacional , Humanos , Mitocondrias/metabolismo , Orgánulos/química , Solventes/química , Fracciones Subcelulares/química
5.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612504

RESUMEN

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Asunto(s)
GTP Fosfohidrolasas , Fusión de Membrana , Mitocondrias , Membranas Mitocondriales , Humanos , Biocatálisis , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Dinámicas Mitocondriales
6.
Nature ; 616(7955): 152-158, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991121

RESUMEN

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.


Asunto(s)
Muerte Celular , Norovirus , Nucleósido-Trifosfatasa , Proteínas Quinasas , Proteínas Virales , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Norovirus/enzimología , Norovirus/crecimiento & desarrollo , Norovirus/patogenicidad , Norovirus/fisiología , Proteínas Quinasas/química , Replicación Viral , Proteínas Virales/química , Proteínas Virales/metabolismo , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Señales de Clasificación de Proteína , Cardiolipinas/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo
7.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839991

RESUMEN

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Asunto(s)
Cardiolipinas , Translocasas Mitocondriales de ADP y ATP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Sitios de Unión , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Humanos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/química , Fosforilación Oxidativa , Translocador 1 del Nucleótido Adenina/metabolismo , Translocador 1 del Nucleótido Adenina/genética , Simulación de Dinámica Molecular , Unión Proteica , Mitocondrias/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Mutación , Mutación Missense
8.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933600

RESUMEN

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Asunto(s)
Cardiolipinas , Lipidómica , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
9.
Trends Immunol ; 45(2): 75-77, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38242759

RESUMEN

In a remarkable recent study, Miao et al. reveal that gasdermin D N-terminal (GSDMD-NT) instigates mitochondrial damage in pyroptosis by forming pores in inner and outer mitochondrial membranes (OMMs). The authors highlight the key role of mitochondrial cardiolipin in the action of GSDMD-NT, and significantly advance our understanding of this inflammatory cell death mechanism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Piroptosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cardiolipinas/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Inflamasomas/metabolismo
10.
Mol Cell ; 73(4): 763-774.e10, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30661980

RESUMEN

The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.


Asunto(s)
Lípidos de la Membrana/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquinona/biosíntesis , Sitios de Unión , Cardiolipinas/metabolismo , Cristalografía , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Triptófano , Ubiquinona/química , Ubiquinona/genética
11.
PLoS Genet ; 20(6): e1011335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913742

RESUMEN

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.


Asunto(s)
Proteínas de Escherichia coli , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte Biológico/genética , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frío , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo
12.
Mol Cell ; 72(1): 152-161.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30174294

RESUMEN

Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/genética , Rec A Recombinasas/genética , Tuberculosis/genética , Adenosina Trifosfatasas/genética , Cardiolipinas/genética , Daño del ADN/genética , Humanos , Mutagénesis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Serina/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
13.
Proc Natl Acad Sci U S A ; 120(30): e2210599120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463214

RESUMEN

Cardiolipin (CL) is an essential phospholipid for mitochondrial structure and function. Here, we present a small mitochondrial protein, NERCLIN, as a negative regulator of CL homeostasis and mitochondrial ultrastructure. Primate-specific NERCLIN is expressed ubiquitously from the GRPEL2 locus on a tightly regulated low level. NERCLIN overexpression severely disrupts mitochondrial cristae structure and induces mitochondrial fragmentation. Proximity labeling and immunoprecipitation analysis suggested interactions of NERCLIN with CL synthesis and prohibitin complexes on the matrix side of the inner mitochondrial membrane. Lipid analysis indicated that NERCLIN regulates mitochondrial CL content. Furthermore, NERCLIN is responsive to heat stress ensuring OPA1 processing and cell survival. Thus, we propose that NERCLIN contributes to the stress-induced adaptation of mitochondrial dynamics. Our findings add NERCLIN to the group of recently identified small mitochondrial proteins with important regulatory functions.


Asunto(s)
Cardiolipinas , Proteínas Mitocondriales , Animales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Cardiolipinas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Homeostasis
14.
PLoS Genet ; 19(7): e1010713, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523383

RESUMEN

We and others have previously shown that genetic association can be used to make causal connections between gene loci and small molecules measured by mass spectrometry in the bloodstream and in tissues. We identified a locus on mouse chromosome 7 where several phospholipids in liver showed strong genetic association to distinct gene loci. In this study, we integrated gene expression data with genetic association data to identify a single gene at the chromosome 7 locus as the driver of the phospholipid phenotypes. The gene encodes α/ß-hydrolase domain 2 (Abhd2), one of 23 members of the ABHD gene family. We validated this observation by measuring lipids in a mouse with a whole-body deletion of Abhd2. The Abhd2KO mice had a significant increase in liver levels of phosphatidylcholine and phosphatidylethanolamine. Unexpectedly, we also found a decrease in two key mitochondrial lipids, cardiolipin and phosphatidylglycerol, in male Abhd2KO mice. These data suggest that Abhd2 plays a role in the synthesis, turnover, or remodeling of liver phospholipids.


Asunto(s)
Cardiolipinas , Hidrolasas , Animales , Masculino , Ratones , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones de Colaboración Cruzada/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Lipidómica , Fosfatidilcolinas/genética , Fosfolípidos/genética , Fosfolípidos/metabolismo
15.
J Biol Chem ; 300(3): 105697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301889

RESUMEN

Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.


Asunto(s)
Aciltransferasas , Cardiolipinas , Oxidorreductasas , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa , Aciltransferasas/genética , Aciltransferasas/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Calcio/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Animales , Ratones , Técnicas de Inactivación de Genes , Unión Proteica
16.
Hum Mol Genet ; 32(12): 2055-2067, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917259

RESUMEN

Barth syndrome is an X-linked disorder caused by loss-of-function mutations in Tafazzin (TAZ), an acyltransferase that catalyzes remodeling of cardiolipin, a signature phospholipid of the inner mitochondrial membrane. Patients develop cardiac and skeletal muscle weakness, growth delay and neutropenia, although phenotypic expression varies considerably between patients. Taz knockout mice recapitulate many of the hallmark features of the disease. We used mouse genetics to test the hypothesis that genetic modifiers alter the phenotypic manifestations of Taz inactivation. We crossed TazKO/X females in the C57BL6/J inbred strain to males from eight inbred strains and evaluated the phenotypes of first-generation (F1) TazKO/Y progeny, compared to TazWT/Y littermates. We observed that genetic background strongly impacted phenotypic expression. C57BL6/J and CAST/EiJ[F1] TazKO/Y mice developed severe cardiomyopathy, whereas A/J[F1] TazKO/Y mice had normal heart function. C57BL6/J and WSB/EiJ[F1] TazKO/Y mice had severely reduced treadmill endurance, whereas endurance was normal in A/J[F1] and CAST/EiJ[F1] TazKO/Y mice. In all genetic backgrounds, cardiolipin showed similar abnormalities in knockout mice, and transcriptomic and metabolomic investigations identified signatures of mitochondrial uncoupling and activation of the integrated stress response. TazKO/Y cardiac mitochondria were small, clustered and had reduced cristae density in knockouts in severely affected genetic backgrounds but were relatively preserved in the permissive A/J[F1] strain. Gene expression and mitophagy measurements were consistent with reduced mitophagy in knockout mice in genetic backgrounds intolerant of Taz mutation. Our data demonstrate that genetic modifiers powerfully modulate phenotypic expression of Taz loss-of-function and act downstream of cardiolipin, possibly by altering mitochondrial quality control.


Asunto(s)
Síndrome de Barth , Masculino , Femenino , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Factores de Transcripción/metabolismo , Modelos Animales de Enfermedad , Aciltransferasas/genética , Ratones Noqueados , Fenotipo
17.
Hum Mol Genet ; 32(24): 3353-3360, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721533

RESUMEN

Barth syndrome (BTHS) is a debilitating X-linked cardio-skeletal myopathy caused by loss-of-function mutations in TAFAZZIN, a cardiolipin (CL)-remodeling enzyme required for the maintenance of normal levels of CL species in mitochondrial membranes. At present, how perturbations in CL abundance and composition lead to many debilitating clinical presentations in BTHS patients have not been fully elucidated. Inspired by our recent findings that CL is essential for optimal mitochondrial calcium uptake, we measured the levels of other biologically important metal ions in BTHS mitochondria and found that in addition to calcium, magnesium levels are significantly reduced. Consistent with this observation, we report a decreased abundance of the mitochondrial magnesium influx channel MRS2 in multiple models of BTHS including yeast, murine myoblast, and BTHS patient cells and cardiac tissue. Mechanistically, we attribute reduced steady-state levels of MRS2 to its increased turnover in CL-deficient BTHS models. By expressing Mrs2 in well-characterized yeast mutants of the phospholipid biosynthetic pathways, we demonstrate a specific requirement of CL for Mrs2 abundance and assembly. Finally, we provide in vitro evidence for the direct binding of CL with human MRS2. Together, our study has identified a critical requirement of CL for MRS2 stability and suggests perturbation of mitochondrial magnesium homeostasis as a novel contributing factor to BTHS pathology.


Asunto(s)
Síndrome de Barth , Humanos , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/genética , Cardiolipinas/metabolismo , Magnesio/metabolismo , Saccharomyces cerevisiae/metabolismo , Calcio/metabolismo , Factores de Transcripción/genética , Mitocondrias/metabolismo , Aciltransferasas/genética
18.
EMBO J ; 40(23): e108428, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34661298

RESUMEN

Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.


Asunto(s)
Aciltransferasas/fisiología , Cardiolipinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación Oxidativa , Proteínas/metabolismo , Animales , Cardiolipinas/química , Cardiolipinas/genética , Drosophila melanogaster , Ácidos Grasos/metabolismo , Femenino , Liposomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Saccharomyces cerevisiae
19.
EMBO Rep ; 24(10): e56596, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37575034

RESUMEN

SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.


Asunto(s)
Cardiolipinas , NAD , Cardiolipinas/metabolismo , Ligandos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Humanos
20.
Cell ; 142(6): 889-901, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20850011

RESUMEN

In response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood. Here we show that Drp1 stimulates tBid-induced Bax oligomerization and cytochrome c release by promoting tethering and hemifusion of membranes in vitro. This function of Drp1 is independent of its GTPase activity and relies on arginine 247 and the presence of cardiolipin in membranes. In cells, overexpression of Drp1 R247A/E delays Bax oligomerization and cell death. Our findings uncover a function of Drp1 and provide insight into the mechanism of Bax oligomerization.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Cardiolipinas/metabolismo , Sistema Libre de Células , Dinaminas , Células HeLa , Humanos , Liposomas/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA