Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 19(7): 1220-1235, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381549

RESUMEN

Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS.


Asunto(s)
Cartílago/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Osteocondrodisplasias/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/ultraestructura , Moléculas de Adhesión Celular/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Cromatografía Liquida , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Ontología de Genes , Glicosaminoglicanos/metabolismo , Proteoglicanos de Heparán Sulfato/deficiencia , Proteoglicanos de Heparán Sulfato/genética , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Microscopía Electrónica de Transmisión , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteocondrodisplasias/genética , Espectrometría de Masas en Tándem
2.
J Struct Biol ; 213(4): 107781, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411695

RESUMEN

The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.


Asunto(s)
Cartílago/ultraestructura , Microscopía por Crioelectrón/métodos , Placa de Crecimiento/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Tibia/ultraestructura , Animales , Membrana Basal/ultraestructura , Vasos Sanguíneos/citología , Vasos Sanguíneos/ultraestructura , Desarrollo Óseo , Calcificación Fisiológica , Cartílago/citología , Cartílago/crecimiento & desarrollo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Femenino , Placa de Crecimiento/citología , Placa de Crecimiento/crecimiento & desarrollo , Ratones Endogámicos BALB C , Morfogénesis , Tibia/citología , Tibia/crecimiento & desarrollo
3.
Artif Organs ; 45(10): 1208-1218, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34036603

RESUMEN

As an alternative to the classical tissue engineering approach, bottom-up tissue engineering emerges using building blocks in bioassembly technologies. Spheroids can be used as building blocks to reach a highly complex ordered tissue by their fusion (bioassembly), representing the foundation of biofabrication. In this study, we analyzed the biomechanical properties and the fusion capacity of human adipose stem/stromal cell (ASC) we spheroids during an in vitro model of hypertrophic cartilage established by our research group. Hypertrophic induced-ASC spheroids showed a statistically significant higher Young's modulus at weeks 2 (P < .001) and 3 (P < .0005) compared with non-induced. After fusion, non-induced and induced-ASC spheroids increased the contact area and decreased their pairs' total length. At weeks 3 and 5, induced-ASC spheroids did not fuse completely, and the cells migrate preferentially in the fusion contact region. Alizarin red O staining showed the highest intensity of staining in the fused induced-ASC spheroids at week 5, together with intense staining for collagen type I and osteocalcin. Transmission electron microscopy and element content analysis (X-ray Energy Dispersive Spectroscopy) revealed in the fused quartet at week 3 a crystal-like structure. Hypertrophic induction interferes with the intrinsic capacity of spheroids to fuse. The measurements of contact between spheroids during the fusion process, together with the change in viscoelastic profile to the plastic, will impact the establishment of bioassembly protocols using hypertrophic induced-ASC spheroids as building blocks in biofabrication.


Asunto(s)
Tejido Adiposo/citología , Cartílago/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/fisiología , Fenómenos Biomecánicos , Cartílago/citología , Cartílago/ultraestructura , Células Cultivadas , Humanos , Hipertrofia , Células Madre Mesenquimatosas/fisiología , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
4.
J Fish Biol ; 98(4): 942-955, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32584448

RESUMEN

When describing the architecture and ultrastructure of animal skeletons, introductory biology, anatomy and histology textbooks typically focus on the few bone and cartilage types prevalent in humans. In reality, cartilage and bone are far more diverse in the animal kingdom, particularly within fishes (Chondrichthyes and Actinopterygii), where cartilage and bone types are characterized by features that are anomalous or even pathological in human skeletons. This review discusses the curious and complex architectures of shark and ray tessellated cartilage, highlighting similarities and differences with their mammalian skeletal tissue counterparts. By synthesizing older anatomical literature with recent high-resolution structural and materials characterization work, this review frames emerging pictures of form-function relationships in this tissue and of the evolution and true diversity of cartilage and bone.


Asunto(s)
Cartílago/ultraestructura , Tiburones/anatomía & histología , Animales , Mamíferos/anatomía & histología , Relación Estructura-Actividad
5.
J Fish Biol ; 98(4): 919-941, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32388865

RESUMEN

Tessellated calcified cartilage (TCC) is a distinctive kind of biomineralized perichondral tissue found in many modern and extinct chondrichthyans (sharks, rays, chimaeroids and their extinct allies). Customarily, this feature has been treated somewhat superficially in phylogenetic analyses, often as a single "defining" character of a chondrichthyan clade. TCC is actually a complex hard tissue with numerous distinctive attributes, but its use as a character complex for phylogenetic analysis has not yet been optimized. This study attempts to improve this situation by presenting new terminology for certain aspects of tesseral architecture, including single-monolayered, multiple-monolayered, polylayered and voussoir tesserae; new histological data, including thin sections of TCC in several Palaeozoic taxa, and new proposals for ways in which various characters and states (many of which are defined here for the first time) could be applied in future phylogenetic analyses of chondrichthyan fishes. It can be concluded that many, but not all, of the unique attributes of modern TCC evolved by the Early Devonian (ca. 400 before present (bp)). The globular calcified cartilage reported in Silurian sinacanthids and the so-called subtessellated perichondral biomineralization (with irregular and ill-defined geometries of a layer or layers of calcified cartilage blocks) of certain extinct "acanthodians" (e.g., Climatius, Ischnacanthus, Cheiracanthus) could represent evolutionary precursors of TCC, which seems to characterize only part of the chondrichthyan total group. It is hypothesized that heavily biomineralized "layer-cake" TCC in certain Palaeozoic chondrichthyans perhaps served a dual physiological role, as a phosphate sink and in providing increased skeletal density in very large (>7 m) Devonian-Permian marine sharks such as ctenacanths and as an adaptation to calcium-deficient environments among Permo-Carboniferous non-marine sharks such as xenacanths. By contrast, the equivalent tissue in modern elasmobranchs probably serves only to reinforce regions of cartilage (mostly in the jaws) subjected to high loading. It is also noted that much of the variation observed in tesseral architecture (including localized remodelling), ultrastructure and histology in modern and extinct chondrichthyans is confined to the perichondrally facing cap zone (where Type-1 collagen matrix predominates in modern TCC), whereas the main body of the tessera (where Type-2 collagen matrix predominates) exhibits comparatively little evidence of remodelling and histological or structural variation.


Asunto(s)
Cartílago/ultraestructura , Fósiles , Tiburones/anatomía & histología , Tiburones/clasificación , Animales , Evolución Biológica , Maxilares/anatomía & histología , Filogenia
6.
Artif Organs ; 44(7): E288-E299, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950507

RESUMEN

Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.


Asunto(s)
Cartílago/crecimiento & desarrollo , Condrogénesis/fisiología , Células Madre Mesenquimatosas/fisiología , Cultivo Primario de Células/métodos , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Cartílago/citología , Cartílago/ultraestructura , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno Tipo X/metabolismo , Medio de Cultivo Libre de Suero , Matriz Extracelular/metabolismo , Humanos , Hipertrofia , Metaloproteinasa 13 de la Matriz/metabolismo , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
7.
Arch Biochem Biophys ; 667: 14-21, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30998909

RESUMEN

Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.


Asunto(s)
Biomineralización/fisiología , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Microscopía de Fuerza Atómica/métodos , Animales , Fenómenos Biomecánicos , Cartílago/química , Cartílago/metabolismo , Cartílago/ultraestructura , Embrión de Pollo , Vesículas Extracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Struct Biol ; 198(1): 5-18, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28286227

RESUMEN

The cartilaginous endoskeletons of elasmobranchs (sharks and rays) are reinforced superficially by minute, mineralized tiles, called tesserae. Unlike the bony skeletons of other vertebrates, elasmobranch skeletons have limited healing capability and their tissues' mechanisms for avoiding damage or managing it when it does occur are largely unknown. Here we describe an aberrant type of mineralized elasmobranch skeletal tissue called endophytic masses (EPMs), which grow into the uncalcified cartilage of the skeleton, but exhibit a strikingly different morphology compared to tesserae and other elasmobranch calcified tissues. We use materials and biological tissue characterization techniques, including computed tomography, electron and light microscopy, X-ray and Raman spectroscopy and histology to characterize the morphology, ultrastructure and chemical composition of tesserae-associated EPMs in different elasmobranch species. EPMs appear to develop between and in intimate association with tesserae, but lack the lines of periodic growth and varying mineral density characteristic of tesserae. EPMs are mineral-dominated (high mineral and low organic content), comprised of birefringent bundles of large calcium phosphate crystals (likely brushite) aligned end to end in long strings. Both tesserae and EPMs appear to develop in a type-2 collagen-based matrix, but in contrast to tesserae, all chondrocytes embedded or in contact with EPMs are dead and mineralized. The differences outlined between EPMs and tesserae demonstrate them to be distinct tissues. We discuss several possible reasons for EPM development, including tissue reinforcement, repair, and disruptions of mineralization processes, within the context of elasmobranch skeletal biology as well as damage responses of other vertebrate mineralized tissues.


Asunto(s)
Calcificación Fisiológica , Cartílago/ultraestructura , Animales , Cristalografía , Minerales/análisis , Tiburones , Esqueleto/ultraestructura , Análisis Espectral , Cicatrización de Heridas
9.
J Struct Biol ; 200(1): 54-71, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28923317

RESUMEN

The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens.


Asunto(s)
Cartílago/ultraestructura , Rajidae/anatomía & histología , Animales , Calcificación Fisiológica , Cartílago/metabolismo , Colágeno/metabolismo , Colágeno/ultraestructura , Proteínas de Peces/metabolismo , Proteínas de Peces/ultraestructura , Masculino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tiburones/anatomía & histología
10.
Biochem Biophys Res Commun ; 482(4): 883-888, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27890611

RESUMEN

The histone methyltransferase Setdb1 represses gene expression by catalyzing lysine 9 of histone H3 trimethylation. Given that the conventional knockout of Setdb1 is embryo-lethal at the implantation stage, its role in craniofacial development is poorly understood. Here, we investigated the role of Setdb1, using conditional knockout mice-in which Setdb1 was deleted in the Meckel's cartilage (Setdb1 CKO)-and the mouse chondrogenic cell line ATDC5-in which Setdb1 was inhibited by siRNA. Deletion of Setdb1 in Meckel's cartilage, the supportive tissue in the embryonic mandible, led to its enlargement, instead of the degeneration that normally occurs. Chondrocytes from the Meckel's cartilage of Setdb1 CKO mice showed increased size. Furthermore, at embryonic days 16.5 and 18.5, part of the perichondrium was disrupted and mineralization was observed in the Meckel's cartilage. Proliferation analysis showed that inhibition of Setdb1 caused increased proliferation in chondrocytes in the Meckel's cartilage as well as in ATDC5 cells. Quantitative RT-PCR showed decreased expression of chondrogenic genes, such as Sox9, Mmp13, Collagen II, and Aggrecan, as a result of Setdb1 inhibition in ATDC5 cells. Along with these phenomenons, SMAD-dependent BMP signaling was significantly increased by the loss of Setdb1 in both the Meckel's cartilage of Setdb1 CKO mice and ATDC5 cells. Therefore, the abnormal development of Meckel's cartilage in Setdb1 CKO mice is partly due to the enhanced SMAD-dependent BMP signaling. Overall, to our knowledge, the present study is the first to show that epigenetic regulation by Setdb1 is indispensable for the embryonic development of Meckel's cartilage.


Asunto(s)
Cartílago/embriología , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Mandíbula/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/metabolismo , Cartílago/ultraestructura , Línea Celular , Proliferación Celular , Tamaño de la Célula , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/ultraestructura , Condrogénesis , N-Metiltransferasa de Histona-Lisina/metabolismo , Mandíbula/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal , Proteínas Smad/metabolismo
11.
Artif Organs ; 41(5): 461-469, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27925229

RESUMEN

The treatment of long-segment tracheal defect requires the transplantation of effective tracheal substitute, and the tissue-engineered trachea (TET) has been proposed as an ideal tracheal substitute. The major cause of the failure of segmental tracheal defect reconstruction by TET is airway collapse caused by the chondromalacia of TET cartilage. The key to maintain the TET structure is the regeneration of chondrocytes in cartilage, which can secrete plenty of cartilage matrices. To address the problem of the chondromalacia of TET cartilage, this study proposed an improved strategy. We designed a new cell sheet scaffold using the poly(lactic-co-glycolic acid) (PLGA) and poly(trimethylene carbonate) (PTMC) to make a porous membrane for seeding cells, and used the PLGA-PTMC cell-scaffold to pack the decellularized allogeneic trachea to construct a new type of TET. The TET was then implanted in the subcutaneous tissue for vascularization for 2 weeks. Orthotopic transplantation was then performed after implantation. The efficiency of the TET we designed was analyzed by histological examination and biomechanical analyses 4 weeks after surgery. Four weeks after surgery, both the number of chondrocytes and the amount of cartilage matrix were significantly higher than those contained in the traditional stem-cell-based TET. Besides, the coefficient of stiffness of TET was significantly larger than the traditional TET. This study provided a promising approach for the long-term functional reconstruction of long-segment tracheal defect, and the TET we designed had potential application prospects in the field of TET reconstruction.


Asunto(s)
Condrogénesis , Dioxanos/química , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Tráquea/trasplante , Animales , Cartílago/citología , Cartílago/fisiología , Cartílago/ultraestructura , Células Cultivadas , Condrocitos/citología , Ácido Láctico/química , Trasplante de Células Madre Mesenquimatosas/métodos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Conejos , Regeneración , Tráquea/lesiones , Tráquea/ultraestructura
12.
J Negat Results Biomed ; 16(1): 7, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28412940

RESUMEN

BACKGROUND: In vitro studies suggest that the multiple functions of decorin are related to both its core protein and its dermatan sulfate chain. To determine the contribution of the dermatan sulfate chain to the functional properties of decorin in vivo, a mutant mouse whose decorin lacked a dermatan sulfate chain was generated. RESULTS: Homozygous mice expressing only the decorin core protein developed and grew in a similar manner to wild type mice. In both embryonic and postnatal mice, all connective tissues studied, including cartilage, skin and cornea, appeared to be normal upon histological examination, and their collagen fibrils were of normal diameter and organization. In addition, abdominal skin wounds healed in an identical manner in the mutant and wild type mice. CONCLUSIONS: The absence of a dermatan sulfate chain on decorin does not appear to overtly influence its functional properties in vivo.


Asunto(s)
Decorina/metabolismo , Dermatán Sulfato/metabolismo , Desarrollo Embrionario , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Cartílago/patología , Cartílago/ultraestructura , Decorina/química , Decorina/genética , Técnicas de Sustitución del Gen , Homocigoto , Ratones Endogámicos C57BL , Cicatrización de Heridas
13.
J Anat ; 229(5): 681-702, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27557870

RESUMEN

The endoskeleton of elasmobranchs (sharks and rays) is comprised largely of unmineralized cartilage, differing fundamentally from the bony skeletons of other vertebrates. Elasmobranch skeletons are further distinguished by a tessellated surface mineralization, a layer of minute, polygonal, mineralized tiles called tesserae. This 'tessellation' has defined the elasmobranch group for more than 400 million years, yet the limited data on development and ultrastructure of elasmobranch skeletons (e.g. how tesserae change in shape and mineral density with age) have restricted our abilities to develop hypotheses for tessellated cartilage growth. Using high-resolution, two-dimensional and three-dimensional materials and structural characterization techniques, we investigate an ontogenetic series of tessellated cartilage from round stingray Urobatis halleri, allowing us to define a series of distinct phases for skeletal mineralization and previously unrecognized features of tesseral anatomy. We show that the distinct tiled morphology of elasmobranch calcified cartilage is established early in U. halleri development, with tesserae forming first in histotroph embryos as isolated, globular islets of mineralized tissue. By the sub-adult stage, tesserae have increased in size and grown into contact with one another. The intertesseral contact results in the formation of more geometric (straight-edged) tesseral shapes and the development of two important features of tesseral anatomy, which we describe here for the first time. The first, the intertesseral joint, where neighboring tesserae abut without appreciable overlapping or interlocking, is far more complex than previously realized, comprised of a convoluted bearing surface surrounded by areas of fibrous attachment. The second, tesseral spokes, are lamellated, high-mineral density features radiating outward, like spokes on a wheel, from the center of each tessera to its joints with its neighbors, likely acting as structural reinforcements of the articulations between tesserae. As tesserae increase in size during ontogeny, spokes are lengthened via the addition of new lamellae, resulting in a visually striking mineralization pattern in the larger tesserae of older adult skeletons when viewed with scanning electron microscopy (SEM) in backscatter mode. Backscatter SEM also revealed that the cell lacunae in the center of larger tesserae are often filled with high mineral density material, suggesting that when intratesseral cells die, cell-regulated inhibition of mineralization is interrupted. Many of the defining ultrastructural details we describe relate to local variation in tissue mineral density and support previously proposed accretive growth mechanisms for tesserae. High-resolution micro-computed tomography data indicate that some tesseral anatomical features we describe for U. halleri are common among species of all major elasmobranch groups despite large variation in tesseral shape and size. We discuss hypotheses about how these features develop, and compare them with other vertebrate skeletal tissue types and their growth mechanisms.


Asunto(s)
Cartílago/ultraestructura , Tiburones/anatomía & histología , Rajidae/anatomía & histología , Animales , Calcificación Fisiológica/fisiología , Imagenología Tridimensional , Microscopía Electrónica , Microtomografía por Rayos X
14.
Mediators Inflamm ; 2016: 9529630, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27199510

RESUMEN

BACKGROUND: Icariin (ICA) is an active compound extracted from Epimedium brevicornum Maxim. Previous reports have shown that icariin has a clinically significant therapeutic effect on rheumatoid arthritis. However, little is known about the mechanism by which icariin inhibits cartilage and bone degradation. METHODS: New Zealand rabbits were immunized with antigen-induced arthritis (AIA) and treated with icariin. Joint tissues from rabbits were studied by histological analysis, transmission electron microscopy (TEM), and micro-CT. The expression levels of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) in joint tissues were determined using immunohistochemistry and real-time PCR analysis. RESULTS: Histological analysis and TEM sections of cartilage in the ICA treated group showed a low level of chondrocyte destruction. Micro-CT analysis showed that the bone mineral density value and bone structural level in ICA treated rabbits were significantly higher compared with those in the AIA group. Immunohistochemistry and real-time PCR analysis showed that icariin treatment reduced RANKL expression and enhanced OPG expression levels, as compared to the AIA group. CONCLUSION: These data indicate that ICA suppresses articular bone loss and prevents joint destruction. This study also determined that ICA regulated articular bone loss in part by regulating RANKL and OPG expression.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Enfermedades Óseas/tratamiento farmacológico , Cartílago/patología , Flavonoides/uso terapéutico , Animales , Cartílago/efectos de los fármacos , Cartílago/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Teóricos , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Conejos
15.
BMC Musculoskelet Disord ; 17: 150, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27052304

RESUMEN

BACKGROUND: Recent studies have shown that autophagy was associated with the development of osteoarthritis (OA), the purpose of this research was to determine the exact role of autophagy in OA and investigate effective therapeutic drugs to inhibit the pathological progression of OA. METHODS: In this study, a cellular OA model was generated by stimulating SW1353 cells with IL-1ß and a rabbit OA model was established by intra-articular injection of collagenase, followed by treatment with Torin 1 or 3-Methyladenine (3-MA). The mRNA expression levels of VEGF, MMP-13 and TIMP-1 were determined by quantitative real-time PCR. The caitilage degeneration was examined by histological evaluation, chondrocytes degeneration and autophagosomes were observed by transmission electron microscopy. Expression levels of Beclin-1 and LC3 were evaluated by western blotting and immunofluorescence. RESULTS: The degeneration of SW 1353 cells, cartilage and chondrocytes was related to the loss of autophagy in experimental OA. 3-MA increased the severity of degeneration of cells and cartilage by autophagy inhibition, while Torin 1 reduced that by autophagy activation. CONCLUSIONS: The loss of autophagy is linked with the experimental OA and autophagy may play a protective role in the pathogenesis of OA. Treatment of Torin 1 can inhibit the degenerative changes of experimental OA by activating autophagy and it may be a useful therapeutic drug for OA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Autofagia/efectos de los fármacos , Cartílago/efectos de los fármacos , Condrocitos/efectos de los fármacos , Naftiridinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Artritis Experimental/metabolismo , Artritis Experimental/patología , Beclina-1 , Cartílago/metabolismo , Cartílago/ultraestructura , Línea Celular Tumoral , Condrocitos/metabolismo , Condrocitos/ultraestructura , Citoprotección , Humanos , Masculino , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Conejos , Índice de Severidad de la Enfermedad , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
J Cell Physiol ; 230(5): 1148-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25336110

RESUMEN

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.


Asunto(s)
Alcaptonuria/patología , Apoptosis , Cartílago/patología , Condrocitos/patología , Adulto , Anciano , Anciano de 80 o más Años , Aldehídos/metabolismo , Cartílago/ultraestructura , Condrocitos/ultraestructura , Activación Enzimática , Femenino , Proteínas de Unión al GTP/metabolismo , Humanos , Articulaciones/patología , Masculino , Persona de Mediana Edad , Osteoartritis/patología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Espectrometría por Rayos X , Coloración y Etiquetado , Transglutaminasas/metabolismo
17.
Mol Genet Metab ; 114(2): 195-202, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24953405

RESUMEN

We treated mucopolysaccharidosis IVA (MPS IVA) mice to assess the effects of long-term enzyme replacement therapy (ERT) initiated at birth, since adult mice treated by ERT showed little improvement in bone pathology [1]. To conduct ERT in newborn mice, we used recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in a CHO cell line. First, to observe the tissue distribution pattern, a dose of 250units/g body weight was administered intravenously in MPS IVA mice at day 2 or 3. The infused enzyme was primarily recovered in the liver and spleen, with detectable activity in the bone and brain. Second, newborn ERT was conducted after a tissue distribution study. The first injection of newborn ERT was performed intravenously, the second to fourth weekly injections were intraperitoneal, and the remaining injections from 5th to 14th weeks were intravenous into the tail vein. MPS IVA mice treated with GALNS showed clearance of lysosomal storage in the liver and spleen, and sinus lining cells in bone marrow. The column structure of the growth plate was organized better than that in adult mice treated with ERT; however, hyaline and fibrous cartilage cells in the femur, spine, ligaments, discs, synovium, and periosteum still had storage materials to some extent. Heart valves were refractory to the treatment. Levels of serum keratan sulfate were kept normal in newborn ERT mice. In conclusion, the enzyme, which enters the cartilage before the cartilage cell layer becomes mature, prevents disorganization of column structure. Early treatment from birth leads to partial remission of bone pathology in MPS IVA mice.


Asunto(s)
Enfermedades Óseas/tratamiento farmacológico , Condroitinsulfatasas/uso terapéutico , Terapia de Reemplazo Enzimático , Mucopolisacaridosis IV/tratamiento farmacológico , Administración Intravenosa , Animales , Animales Recién Nacidos , Enfermedades Óseas/patología , Células CHO , Cartílago/efectos de los fármacos , Cartílago/ultraestructura , Condrocitos/efectos de los fármacos , Condrocitos/ultraestructura , Condroitinsulfatasas/administración & dosificación , Condroitinsulfatasas/genética , Condroitinsulfatasas/farmacocinética , Cricetulus , Modelos Animales de Enfermedad , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/ultraestructura , Sulfato de Queratano/sangre , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Mucopolisacaridosis IV/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapéutico , Bazo/efectos de los fármacos , Distribución Tisular/efectos de los fármacos
18.
J Anat ; 226(5): 447-57, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25939458

RESUMEN

The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period.


Asunto(s)
Cartílago/crecimiento & desarrollo , Colágeno/ultraestructura , Articulación de la Rodilla/crecimiento & desarrollo , Animales , Compuestos Azo , Cartílago/ultraestructura , Técnicas Histológicas , Masculino , Microscopía Electrónica de Rastreo , Ratas , Ratas Wistar , Restricción Física , Estadísticas no Paramétricas , Factores de Tiempo
19.
J Microsc ; 260(2): 219-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26366638

RESUMEN

Nonlinear optical microscopy (NLOM) was used as a noninvasive and label-free tool to detect and quantify the extent of the cartilage recovery. Two cartilage injury models were established in the outer ears of rabbits that created a different extent of cartilage recovery based on the presence or absence of the perichondrium. High-resolution NLOM images were used to measure cartilage repair, specifically through spectral analysis and image texture. In contrast to a wound lacking a perichondrium, wounds with intact perichondria demonstrated significantly larger TPEF signals from cells and matrix, coarser texture indicating the more deposition of type I collagen. Spectral analysis of cells and matrix can reveal the matrix properties and cell growth. In addition, texture analysis of NLOM images showed significant differences in the distribution of cells and matrix of repaired tissues with or without perichondrium. Specifically, the decay length of autocorrelation coefficient based on TPEF images is 11.2 ± 1.1 in Wound 2 (with perichondrium) and 7.5 ± 2.0 in Wound 1 (without perichondrium), indicating coarser image texture and faster growth of cells in repaired tissues with perichondrium (p < 0.05). Moreover, the decay length of autocorrelation coefficient based on collagen SHG images also showed significant difference between Wound 2 and 1 (16.2 ± 1.2 vs. 12.2 ± 2.1, p < 0.05), indicating coarser image texture and faster deposition of collagen in repaired tissues with perichondrium (Wound 2). These findings suggest that NLOM is an ideal tool for studying cartilage repair, with potential applications in clinical medicine. NLOM can capture macromolecular details and distinguish between different extents of cartilage repair without the need for labelling agents.


Asunto(s)
Cartílago/ultraestructura , Microscopía/métodos , Animales , Cartílago/fisiología , Proliferación Celular , Colágeno Tipo I/química , Colágeno Tipo I/ultraestructura , Oído/lesiones , Microscopía/instrumentación , Conejos , Cicatrización de Heridas
20.
Clin Calcium ; 25(10): 1521-8, 2015 Oct.
Artículo en Japonés | MEDLINE | ID: mdl-26412732

RESUMEN

For Stiffness, we have several ways, Vicker's, Nano Indentor and NanoIndentation with AFM. Recent study needs several nm, tens of nm scale lateral resolution. For this request, AFM supply new technology, PeakForce QNM®, is only way to measure sub molecular level modulus mapping. In this article, introduce several data and specially talk about bone modulus near osteocytic lacunae treated with PTH which is considering to resolve bone matrix around the osteocytic lacunae.


Asunto(s)
Huesos/ultraestructura , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Animales , Cartílago/ultraestructura , Colágeno/ultraestructura , Microscopía de Fuerza Atómica/instrumentación , Nanotecnología/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA