Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Subcell Biochem ; 104: 33-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963482

RESUMEN

Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.


Asunto(s)
Catalasa , Evolución Molecular , Catalasa/química , Catalasa/genética , Catalasa/metabolismo , Humanos , Animales , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Hemo/química , Hemo/metabolismo
2.
J Am Chem Soc ; 146(18): 12664-12671, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587543

RESUMEN

Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.


Asunto(s)
Catalasa , ADN , Ureasa , ADN/química , ADN/metabolismo , Ureasa/química , Ureasa/metabolismo , Catalasa/química , Catalasa/metabolismo , Nanoestructuras/química , Biocatálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo
3.
J Am Chem Soc ; 146(21): 14875-14888, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38750611

RESUMEN

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN5@PtN4/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity. This creates catalase-like activity and enhances oxidase-like activity to catalyze cascade enzymatic reactions (H2O2 → O2 → O2•-), which can overcome tumor hypoxia and accumulate cytotoxic superoxide radicals (O2•-). Significantly, H-MoN5@PtN4/C displays destructive d-π conjugation between the metal and substrate to attenuate the restriction of orbitals and electrons. This markedly improves enzymatic performance (catalase-like and oxidase-like activity) of a Mo single atom and peroxidase-like properties of a Pt single atom. Furthermore, the H-MoN5@PtN4/C can deplete overexpressed glutathione (GSH) through a redox reaction, which can avoid consumption of ROS (O2•- and •OH). As a result, H-MoN5@PtN4/C can overcome limitations of a complex tumor microenvironment (TME) for tumor-specific therapy based on TME-activated catalytic activity.


Asunto(s)
Electrones , Ligandos , Humanos , Platino (Metal)/química , Catalasa/química , Catalasa/metabolismo , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Glutatión/química , Glutatión/metabolismo , Nanoestructuras/química
4.
J Am Chem Soc ; 146(20): 13805-13816, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38552185

RESUMEN

Cuproptosis, a copper-dependent cell death process, has been confirmed to further activate the immune response and mediate the immune resistance. However, hypoxic tumor microenvironment hampers cuproptosis sensitivity and suppresses the body's antitumor immune response. Herein, we have successfully immobilized and functionalized catalase (CAT) with long single-stranded DNA containing polyvalent CpG sequences through rolling circle amplification (RCA) techniques, obtaining an enzyme-cored spherical nucleic acid nanoplatform (CAT-ecSNA-Cu) to deliver copper ions for cuproptosis. The presence of long-stranded DNA-protected CAT enhances mitochondrial respiration by catalyzing the conversion of H2O2 to O2, thereby sensitizing cuproptosis. Meanwhile, increased tumor oxygenation suppresses the expression of the hypoxia-inducible factor-1 (HIF-1) protein, resulting in the alleviation of the immunosuppressive tumor microenvironment. Of note, cuproptosis induces immunogenic cell death (ICD), which facilitates dendritic cell (DC) maturation and enhances antigen presentation through polyCpG-supported Toll-like receptor 9 (TLR9) activation. Furthermore, cuproptosis-induced PD-L1 upregulation in tumor cells complements checkpoint blockers (αPD-L1), enhancing antitumor immunity. The strategy of enhancing cuproptosis-mediated antitumor immune responses by alleviating hypoxia effectively promotes the activation and proliferation of effector T cells, ultimately leading to long-term immunity against cancer.


Asunto(s)
Catalasa , Cobre , Hipoxia Tumoral , Hipoxia Tumoral/efectos de los fármacos , Animales , Cobre/química , Catalasa/metabolismo , Catalasa/química , Ratones , Microambiente Tumoral/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Muerte Celular Inmunogénica/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos
5.
Biomacromolecules ; 25(6): 3840-3849, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38801711

RESUMEN

The associative phase separation of charged biomacromolecules plays a key role in many biophysical events that take place in crowded intracellular environments. Such natural polyelectrolyte complexation and phase separation often occur at nonstoichiometric charge ratios with the incorporation of bioactive proteins, which is not studied as extensively as those complexations at stoichiometric ratios. In this work, we investigated how the addition of a crowding agent (polyethylene glycol, PEG) affected the complexation between chitosan (CS) and hyaluronic acid (HA), especially at nonstoichiometric ratios, and the encapsulation of enzyme (catalase, CAT) by the colloidal complexes. The crowded environment promoted colloidal phase separation at low charge ratios, forming complexes with increased colloidal and dissolution stability, which resulted in a smaller size and polydispersity (PDI). The binding isotherms revealed that the addition of PEG greatly enhanced the ion-pairing strength (with increased ion-pairing equilibrium constant Ka from 4.92 × 104 without PEG to 1.08 × 106 with 200 g/L PEG) and switched the coacervation from endothermic to exothermic, which explained the promoted complexation and phase separation. At the stoichiometric charge ratio, the enhanced CS-HA interaction in crowded media generated a more solid-like coacervate phase with a denser network, slower chain relaxation, and higher modulus. Moreover, both crowding and complex encapsulation enhanced the activity and catalytic efficiency of CAT, represented by a 2-fold increase in catalytic efficiency (Kcat/Km) under 100 g/L PEG crowding and CS-HA complex encapsulation. This is likely due to the lower polarity in the microenvironment surrounding the enzyme molecules. By a systematic investigation of both nonstoichiometric and stoichiometric charge ratios under macromolecular crowding, this work provided new insights into the complexation between natural polyelectrolytes in a scenario closer to an intracellular environment.


Asunto(s)
Catalasa , Quitosano , Ácido Hialurónico , Polietilenglicoles , Ácido Hialurónico/química , Quitosano/química , Polietilenglicoles/química , Catalasa/química , Coloides/química
6.
Biomacromolecules ; 25(6): 3486-3498, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718188

RESUMEN

Enzyme immobilization is a crucial technique for improving the stability of enzymes. Compared with free enzymes, immobilized enzymes offer several advantages in industrial applications. Efficient enzyme immobilization requires a technique that integrates the advantages of physical absorption and covalent binding while addressing the limitations of conventional support materials. This study offers a practical approach for immobilizing α-amylase on a hierarchically porous chitosan (CS) monolith. An optimized CS monolith was fabricated using chemically modified chitin by thermally induced phase separation. By combining physical adsorption and covalent bonding, this technique leverages the amino and hydroxy groups present in CS to facilitate effective enzyme binding and stability. α-Amylase immobilized on the CS monolith demonstrated excellent stability, reusability, and increased activity compared to its soluble counterpart across various pH levels and temperatures. In addition, the CS monolith exhibited a significant potential to immobilize other enzymes, namely, lipase and catalase. Immobilized lipase and catalase exhibited higher loading capacities and enhanced activities than their soluble forms. This versatility highlights the broad applicability of CS monoliths as support materials for various enzymatic processes. This study provides guidelines for fabricating hierarchical porous monolith structures that can provide efficient enzyme utilization in flow systems and potentially enhance the cost-effectiveness of enzymes in industrial applications.


Asunto(s)
Quitosano , Enzimas Inmovilizadas , Lipasa , Enzimas Inmovilizadas/química , Quitosano/química , Porosidad , Lipasa/química , Lipasa/metabolismo , Estabilidad de Enzimas , Catalasa/química , alfa-Amilasas/química , Adsorción , Concentración de Iones de Hidrógeno , Temperatura
7.
Nanotechnology ; 35(36)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38865988

RESUMEN

Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.


Asunto(s)
Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Estructuras Metalorgánicas/química , Especies Reactivas de Oxígeno/metabolismo , Humanos , Depuradores de Radicales Libres/química , Nanoestructuras/química , Catalasa/química , Catalasa/metabolismo , Animales , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/química
8.
J Nanobiotechnology ; 22(1): 286, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796465

RESUMEN

Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.


Asunto(s)
Enfermedades Gastrointestinales , Nanoestructuras , Humanos , Nanoestructuras/química , Animales , Enzimas/química , Enzimas/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Catalasa/química , Catalasa/metabolismo , Catálisis , Glutatión Peroxidasa/metabolismo
9.
Bioprocess Biosyst Eng ; 47(6): 919-929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644439

RESUMEN

The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (ß-galactosidase) and unsweet (ß-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; ß-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (ß-galactosidase) and ten cycles (glucose oxidase with catalase).


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Lactosa , Leche , beta-Galactosidasa , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Leche/química , Lactosa/metabolismo , Lactosa/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Animales , Aspergillus niger/enzimología , Glucosa/metabolismo , Glucosa/química , Catalasa/metabolismo , Catalasa/química , Membranas Artificiales
10.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675681

RESUMEN

Alpha-ketoglutaric acid (α-KG), as an intermediate product of the tricarboxylic acid cycle, plays a crucial role in peptide and amino acid synthesis. In order to reduce costs and improve efficiency in the oxidative production of α-ketoglutaric acid, this study successfully synthesized and expressed L-glutamate oxidase (LGOXStr) from Streptomyces viridosporus R111 and catalase (KatGEsc) from Escherichia coli H736. Two immobilization methods and the conditions for one-step whole-cell catalysis of α-ketoglutaric acid were investigated. α-Ketoglutaric acid has broad applications in the pharmaceutical, food, and chemical industries. The specific research results are as follows: (1) By fusing the sfGFP tag, L-glutamate oxidase (LGOXStr r) and catalase (KatGEsc) were successfully anchored to the outer membrane of Escherichia coli cells, achieving one-step whole-cell catalysis of α-ketoglutaric acid with a conversion efficiency of up to 75%. (2) Through the co-immobilization of LGOXStr and KatGEsc, optimization of the preparation parameters of immobilized cells, and exploration of the immobilization method using E.coli@ZIF-8, immobilized cells with conversion rates of over 60% were obtained even after 10 cycles of reuse. Under the optimal conditions, the production rate of α-ketoglutaric acid reached 96.7% in a 12 h reaction, which is 1.1 times that of E. coli@SA and 1.29 times that of free cells.


Asunto(s)
Catalasa , Escherichia coli , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Escherichia coli/enzimología , Catalasa/metabolismo , Catalasa/química , Aminoácido Oxidorreductasas/metabolismo , Aminoácido Oxidorreductasas/química , Streptomyces/enzimología , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
11.
Dokl Biochem Biophys ; 516(1): 73-82, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38539011

RESUMEN

This work finds suitable enzyme activity protectants to improve the recovery rate of enzyme activity in the preparation of human polymerized hemoglobin-superoxide dismutase-catalase-carbonic anhydrase (PolyHb-SOD-CAT-CA), including trehalose, sucrose, glucose, hydroxypropyl-ß-cyclodextrin, and mannitol.Different types and concentrations of enzyme activity protective agents were added during polymerization to compare their protective ability to enzyme activity and the effect on the properties of hemoglobin. The study found that compared with trehalose, the protective effect of sucrose on CA enzyme activity is non-significant to that on hemoglobin, the recovery rate of SOD, and CAT enzyme activity has significant increased. Glucose, hydroxypropyl-ß-cyclodextrin, and mannitol are unsuitable for the added enzyme activity protective agent of PolyHb-SOD-CAT-CA.The protective effect of sucrose on CA was non-significant with trehalose. The protective effect of sucrose on SOD and CAT enzyme activity was higher than trehalose, and the protective effect reached the maximum when the concentration reached 1.5%.


Asunto(s)
Anhidrasas Carbónicas , Catalasa , Hemoglobinas , Superóxido Dismutasa , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/química , Humanos , Catalasa/metabolismo , Catalasa/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Polimerizacion
12.
Angew Chem Int Ed Engl ; 63(22): e202403581, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38514603

RESUMEN

Nanozymes possess multi-enzyme activities over the natural enzymes, which produce multi-pathway synergistic effects for varies of biomedical applications. Unfortunately, their multi-enzyme activities are in fighting, significantly reducing the synergistic effects. Dynamic regulation of their multi-enzyme activities is the bottleneck for intelligent therapies. Herein, we construct a novel oxygen-nitrogen functionalized carbon quantum dots (O/N-CQDs) with peroxidase-like (Reactive oxygen species (ROS) producer) activity. Interestingly, the peroxidase-like activity can be reversibly converted to catalase-like (ROS scavenger) activity under visible light irradiation. It is found that both the peroxidase/catalase-like activity of O/N-CQDs can be precisely manipulated by the light intensity. The mechanism of switchable enzyme activities is attributed to the polarization of quinoid nitrogen in polyaniline (PANI) precursor retained on O/N-CQDs under visible light, which consumes the ROS to produce O2 and H2O. As a proof-of-concept demonstration, we are able to non-intrusively up and down regulate the ROS level in cells successfully by simply switching off and on the light respectively, potentially facilitating the precise medicine based on the development of the disease. Indeed, the photo-switchable peroxidase/catalase-like activity of O/N-CQDs opens a non-invasive strategy for better manipulations of the multi-activity of nanozymes, promising their wider and more intelligent biomedical applications.


Asunto(s)
Carbono , Catalasa , Luz , Puntos Cuánticos , Especies Reactivas de Oxígeno , Puntos Cuánticos/química , Carbono/química , Catalasa/metabolismo , Catalasa/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Peroxidasa/química , Procesos Fotoquímicos
13.
Mikrochim Acta ; 190(5): 174, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020044

RESUMEN

Nanomaterials possessing artificial, enzyme-like catalytic activity (nanozymes, NZs) have a great potential for application in research, immunological assays, biosensors, in vivo imaging, and as therapeutic agents. Despite the obvious advances in construction and understanding of functional properties of NZs, there is still no clear evidence of whether they can complement the loss of corresponding enzymatic activity in vivo. Herein, we report the first, to the best to our knowledge, example of successful substitution of natural enzyme activity by catalase-like platinum (nPt) and platinum-gold (nPtAu) nanoparticles transferred to the cells of methylotrophic yeast Ogataea polymorpha. The nPt NZs were synthesized by the chemical reduction method and used as a seed to produce the nPt(core)Au(shell) particles. The produced nPt NZs were 68.1 and 91.3 nm in size, while the hydrids were of 531.2 and 615.1 nm. Both nPt and nPtAu demonstrated catalase activity in vitro. The catalase-deficient strain Ogataea polymorpha C-105 was shown to be able to grow on methanol and a mixture of glucose and methanol in the presence although not in the absence of NZs, this correlating with the decrease in intracellular hydrogen peroxide production. The results provide the first example of complementation of the natural enzyme function by synthetic NZs, the phenomenon which can further be used in a screening for new catalase-like nanozymes and as a fruitful tool to modify living cells by nanoparticles possessing catalytic activity and to use such modified cells as sensitive elements in cell-based biosensors.


Asunto(s)
Metanol , Saccharomycetales , Catalasa/química , Platino (Metal)
14.
Prep Biochem Biotechnol ; 53(6): 610-621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36074915

RESUMEN

Camel is continually exposed to stressful desert environment that enhances generation of reactive oxygen species, including hydrogen peroxide (H2O2). Catalase plays an important role in detoxification of H2O2. A highly active catalase from camel kidney was purified to homogeneity, with a specific activity of 1,774,392 U/mg protein, using ion exchange and metal chelate affinity chromatography. The molecular weight of the enzyme was 268 kDa consisting of four identical subunits of 63 kDa. The enzyme showed higher optimum temperature (45 °C) and higher activation energy (4.37 kJ mol-1). The thermodynamic parameters, ΔH, ΔG and ΔS, were determined. The effect of various metal ions and chemicals on enzyme activity was investigated. Km, Vmax, kcat and kcat/Km values for H2O2 were found to be 46 mM, 10,715,045 U/mg, 48,265,968 s-1 and 2,966,562 s-1 mM-1, respectively. Camel kidney catalase displayed higher affinity efficiency for H2O2 and can protect reduced glutathione (GSH) from oxidation by H2O2. Sodium azide was found to be a noncompetitive inhibitor of enzyme with Ki and IC50 of 17.88 µM and 20.94 µM, respectively. Camel catalase showed unique biochemical properties. Interestingly, camel catalase can protect molecules (GSH) and organ functions (kidney) from the toxic effects of H2O2 induced by stressful desert environment.


Asunto(s)
Camelus , Peróxido de Hidrógeno , Animales , Catalasa/química , Camelus/metabolismo , Peróxido de Hidrógeno/química , Termodinámica , Metales , Riñón/metabolismo , Concentración de Iones de Hidrógeno
15.
Angew Chem Int Ed Engl ; 62(19): e202217995, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36896734

RESUMEN

Conventional nanozymes often possess low active site density. Pursuing effective strategies for constructing highly active single-atomic nanosystems with maximum atom utilization efficiency is exceptionally attractive. Herein, we develop a facile "missing-linker-confined coordination" strategy to fabricate two self-assembled nanozymes, i.e., conventional nanozyme (NE) and single-atomic nanozyme (SAE), which respectively consist of Pt nanoparticles and single Pt atoms as active catalytic sites anchored in metal-organic frameworks (MOFs) with encapsulated photosensitizers for catalase-mimicking enhanced photodynamic therapy. Compared to a Pt nanoparticle-based conventional nanozyme, a Pt single-atomic nanozyme shows enhanced catalase-mimicking activity in generating oxygen for overcoming tumor hypoxia, thus exhibiting a more efficient reactive oxygen species generation and high tumor inhibition rate.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Catalasa/química , Medicina de Precisión , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno
16.
Luminescence ; 37(9): 1547-1556, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816002

RESUMEN

Nifedipine (NDP), a dihydropyridine calcium antagonist, is widely used for the treatment of hypertension and angina pectoris. Catalase is a key antioxidant enzyme that is closely relevant to the level of reactive oxygen specie in vivo. Here, the research explored the effects of NDP on the conformation and catalytic function of bovine liver catalase (BLC) through enzymatic reaction kinetic techniques, multispectroscopic analysis, and computer simulation methods. Kinetic studies clarified that the NDP reduced the activity of BLC using a noncompetitive inhibition mechanism. Based on trial data, a static quenching mechanism functioned in quenching the intrinsic fluorescence of BLC. The binding constant value was (4.486 ± 0.008) × 104 M-1 (298 K) and BLC had one binding site for NDP. Tyr was prone to be exposed more to a hydrophilic environment in wake of a shift in fluorescence value. The binding reaction of BLC to NDP caused a conformational change in BLC, which in turn led to increase in the α-helix content and a decline in the ß-sheet content. Furthermore, several amino acids residues interacted with NDP by means of van der Waals forces, whereas Gln397, Asn368, Gln371, Asn384, and Pro377 formed several hydrogen bonds with NDP.


Asunto(s)
Hígado , Nifedipino , Animales , Sitios de Unión , Catalasa/química , Bovinos , Simulación por Computador , Cinética , Simulación del Acoplamiento Molecular , Nifedipino/metabolismo , Nifedipino/farmacología , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica
17.
Anal Chem ; 93(4): 1944-1950, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33399445

RESUMEN

Carboxyl-group specific chemical cross-linking is gaining an increased interest as a structural mass spectrometry/structural proteomics technique that is complementary to the more commonly used amine-specific chemistry using succinimide esters. One of these protocols uses a combination of dihydrazide linkers and the coupling reagent DMTMM [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium] chloride, which allows performing the reaction at neutral pH. The reaction yields two types of products, carboxyl-carboxyl cross-links that incorporate the dihydrazide linker and zero-length carboxyl-amine cross-links induced by DMTMM alone. Until now, it has not been systematically investigated how the balance between the two products is affected by experimental conditions. Here, we studied the role of the ratios of the two reagents (using pimelic dihydrazide and DMTMM) and demonstrate that the concentration of the two reagents can be systematically adjusted to favor one reaction product over the other. Using a set of five model proteins, we observed that the number of identified cross-linked peptides could be more than doubled by a combination of three different reaction conditions. We also applied this strategy to the bovine 20S proteasome and the Escherichia coli 70S ribosome, again demonstrating complementarity and increased cross-link coverage.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Proteínas/química , Proteómica , Animales , Catalasa/química , Catalasa/metabolismo , Conalbúmina/química , Conalbúmina/metabolismo , Creatina Quinasa/química , Creatina Quinasa/metabolismo , Espectrometría de Masas/métodos , Proteínas/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Transferrina/química , Transferrina/metabolismo
18.
Toxicol Appl Pharmacol ; 411: 115386, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33383042

RESUMEN

This study aims to investigate whether Escin (ES) can protect against Cyclophosphamide (CPM)-induced cardiac damage. The experimental rats were categorized as Control, CPM (200 mg/kg), ES (10 mg/kg), and CPM + ES Groups, each having 6 members. Their heart tissues were stained with Hematoxylin and Eosin and the structural changes were investigated under the light microscope. The biochemical markers of ischemia modified albumin (IMA), creatine kinase (CK-MB), antioxidant activity indicators Catalase (CAT), and superoxide dismutase (SOD) activities were measured using blood samples. Besides, the effects of CPM, ES, and CPM + ES upon CAT and SOD activities were shown via molecular docking studies. In the Single-Dose CPM group, CK-MB and IMA levels significantly increased while SOD and CAT levels significantly decreased. However, the heart tissues were damaged. CK-MB and IMA levels significantly decreased in CP+ ES Group. On the other hand, SOD, and CAT levels significantly increased and reduced the damage remarkably. Our findings showed that ES treatment successfully reduced the toxic effects upon the rats. The conclusion is that ES treatment can help protect the heart tissue against CPM-induced toxicity. Both in-vivo results and molecular modeling studies showed that the negative effects of CPM upon SOD activity were bigger than that of CAT.


Asunto(s)
Antioxidantes/farmacología , Ciclofosfamida , Escina/farmacología , Cardiopatías/prevención & control , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/química , Biomarcadores/sangre , Cardiotoxicidad , Catalasa/sangre , Catalasa/química , Forma MB de la Creatina-Quinasa/sangre , Modelos Animales de Enfermedad , Escina/química , Cardiopatías/sangre , Cardiopatías/inducido químicamente , Cardiopatías/patología , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Conformación Proteica , Ratas Sprague-Dawley , Albúmina Sérica Humana , Relación Estructura-Actividad , Superóxido Dismutasa/sangre , Superóxido Dismutasa/química
19.
Inorg Chem ; 60(23): 17498-17508, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757735

RESUMEN

Bimetallic active sites in enzymes catalyze small-molecule conversions that are among the top 10 challenges in chemistry. As different metal cofactors are typically incorporated in varying protein scaffolds, it is demanding to disentangle the individual contributions of the metal and the protein matrix to the activity. Here, we compared the structure, properties, and hydrogen peroxide reactivity of four homobimetallic cofactors (Mn(II)2, Fe(II)2, Co(II)2, Ni(II)2) that were reconstituted into a four-helix bundle protein. Reconstituted proteins were studied in solution and in crystals. All metals bind with high affinity and yield similar cofactor structures. Cofactor variants react with H2O2 but differ in their turnover rates, accumulated oxidation states, and trapped peroxide-bound intermediates. Varying the metal composition thus creates opportunities to tune the reactivity of the bimetallic cofactor and to study and functionalize reactive species.


Asunto(s)
Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Metales Pesados/metabolismo , Catalasa/química , Peróxido de Hidrógeno/química , Metales Pesados/química , Oxidación-Reducción
20.
Inorg Chem ; 60(13): 9309-9319, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34109781

RESUMEN

Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.


Asunto(s)
Antioxidantes/metabolismo , Catalasa/metabolismo , Cobre/metabolismo , Metaloproteínas/metabolismo , Péptidos/metabolismo , Antioxidantes/química , Catalasa/química , Cobre/química , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Metaloproteínas/química , Péptidos/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA