Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.550
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(12): 5046-5055, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488055

RESUMEN

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Asunto(s)
Clenbuterol , Nanopartículas del Metal , Oro , Inmunoensayo , Fenómenos Químicos , Límite de Detección
2.
Inorg Chem ; 63(7): 3383-3392, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315637

RESUMEN

Clenbuterol (CLB) as an illegal feed additive may cause a great security risk to food safety. However, convenient and efficient detection means for CLB in practical application remain a formidable challenge. Herein, a stable Eu-based organic framework {[H2N(CH3)2]2[Eu2(ttca)2]·H2O}n (compound 1) (H4ttca = [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid) has been harvested, exhibiting excellent chemical stability and thermal stability. Luminescence investigation reveals that compound 1 can sensitively and selectively detect CLB without being affected by different components from simulated serum and urine (limit detection: 22.7 nM). Furthermore, sensor 1 can also be applicable to CLB recognition in real swine feeds, presenting excellent anti-interference performance. The good cyclicity of compound 1 endows CLB determination with many advantages: low cost, high stability, and simplicity. Importantly, in view of the indication of the luminescence color (red to blue), test membranes were fabricated and employed for convenient and fast CLB detection, providing a valuable scheme for the visual monitoring of CLB in meat products. This work enriches rare earth metal compounds and luminescence sensor portfolios and breaks the concentration record (nM) for detecting CLB compared with reported complex materials, providing an effective monitoring platform for CLB visually.


Asunto(s)
Clenbuterol , Animales , Porcinos , Luminiscencia , Tiazolidinas
3.
Anal Chem ; 95(8): 4095-4103, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36780295

RESUMEN

It is of great importance to overcome potential incompatibility problems between dyestuffs and antibodies (mAbs) for extensive commercial application of a dyestuff-chemistry-based ultrafast colorimetric lateral flow immunoassay (cLFIA). Herein, inspired by traditional staining technologies, a basic dyestuff gallocyanine (GC)-assisted biogenic "potential scalpel"-based cLFIA (GC-ABPS-based cLFIA) by employing clenbuterol (CLE) as proof-of-concept was proposed to solve a high degree of incompatibility between the same potential dyestuffs and mAbs. Goat antimouse immunoglobulin (Ab2) could serve as the "potential scalpel" to form the positive potential value biomolecular network self-assemblers (BNSA) with anti-CLE mAbs (AbCLE) by noncovalent force. The cLFIA completed the entire detection process from de novo to detection results within 30 min thanks to the easy availability and ideal marking efficiency (≤1 min, saving 0.4-10 h) of GC. Encouragingly, the proposed ultrafast GC-ABPS-based cLFIA has also exhibited high sensitivity (0.411 ng mL-1) and low cost (300 times) compared with other cLFIAs. Also, the feasibility of the proposed cLFIA was demonstrated by detecting CLE in beef, pork ham, and skim milk. Finally, the proposed GC-ABPS-based cLFIA has broadened the application range of dyestuffs and provided an effective reference strategy for the application of dyestuffs in food safety monitoring.


Asunto(s)
Clenbuterol , Animales , Bovinos , Inmunoensayo/métodos , Inocuidad de los Alimentos , Anticuerpos Monoclonales
4.
Int J Legal Med ; 137(4): 1023-1037, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37062796

RESUMEN

Clenbuterol is a potent beta-2 agonist widely misused by professional athletes and bodybuilders. Information on clenbuterol associated adverse events is present in case reports and case series, though it may not be readily available. This systematic review aimed to critically evaluate the evidence of adverse events associated with clenbuterol among athletes. The search strategy was in accordance with PRISMA guidelines. Databases such as PubMed, Science Direct, Scopus, and Google Scholar were searched from 1990 to October 2021 to find out the relevant case reports and case series. There were 23 included studies. Using a suitable scale, the included studies' methodological quality analysis was evaluated. In total, 24 athletes experienced adverse events. Oral ingestion of clenbuterol was the most preferred route among them. The daily administered dose of clenbuterol was ranging from 20 µg to 30 mg. Major adverse events experienced by athletes were supraventricular tachycardia, atrial fibrillation, hypotension, chest pain, myocardial injury, myocarditis, myocardial ischemia, myocardial infarction, cardiomyopathy, hepatomegaly, hyperglycemia, and death. The cardiac-related complications were the most commonly occurring adverse events. Clenbuterol is notorious to produce life-threatening adverse events including death. Lack of evidence regarding the performance-enhancing effects of clenbuterol combined with its serious toxicities questions the usefulness of this drug in athletes.


Asunto(s)
Cardiomiopatías , Clenbuterol , Infarto del Miocardio , Isquemia Miocárdica , Humanos , Clenbuterol/efectos adversos , Agonistas Adrenérgicos beta
5.
Anal Bioanal Chem ; 415(8): 1487-1496, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36732370

RESUMEN

A novel matrix certified reference material (CRM) for clenbuterol in mutton (GBW 10216) was developed to assist measurement and risk monitoring of clenbuterol in mutton. The candidate CRM raw samples were obtained by oral administration of clenbuterol and investigating the pharmacokinetics of clenbuterol in sheep. A high-precision isotope dilution coupled with liquid chromatography tandem mass spectrometry (LC-ID-MS/MS) method was established and assigned the value of clenbuterol in mutton powder through combined detection of nine inter-laboratories. The certified value with expanded uncertainty was 21.1 ± 2.2 µg/kg (k = 2, 95% confidence) for clenbuterol in mutton. The prepared matrix CRM was sufficiently homogeneous between and within bottles. The long-term stability of clenbuterol in mutton powder was evaluated for 12 months at -20℃ and short-term stability for 7 days at 4℃ and 50℃. The uncertainties originating from characterization, homogeneity, and stability were systematically analyzed and evaluated. The prepared matrix CRM can be applied for proficiency testing and nationwide risk monitoring programs to guarantee the accuracy and comparability of clenbuterol measurement results in mutton.


Asunto(s)
Clenbuterol , Espectrometría de Masas en Tándem , Animales , Ovinos , Espectrometría de Masas en Tándem/métodos , Clenbuterol/análisis , Estándares de Referencia , Polvos , Cromatografía Liquida/métodos
6.
Nature ; 547(7661): 68-73, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28607487

RESUMEN

G-protein-coupled receptor (GPCR)-mediated signal transduction is central to human physiology and disease intervention, yet the molecular mechanisms responsible for ligand-dependent signalling responses remain poorly understood. In class A GPCRs, receptor activation and G-protein coupling entail outward movements of transmembrane helix 6 (TM6). Here, using single-molecule fluorescence resonance energy transfer imaging, we examine TM6 movements in the ß2 adrenergic receptor (ß2AR) upon exposure to orthosteric ligands with different efficacies, in the absence and presence of the Gs heterotrimer. We show that partial and full agonists differentially affect TM6 motions to regulate the rate at which GDP-bound ß2AR-Gs complexes are formed and the efficiency of nucleotide exchange leading to Gs activation. These data also reveal transient nucleotide-bound ß2AR-Gs species that are distinct from known structures, and provide single-molecule perspectives on the allosteric link between ligand- and nucleotide-binding pockets that shed new light on the G-protein activation mechanism.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Imagen Individual de Molécula , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Sitio Alostérico , Membrana Celular/metabolismo , Clenbuterol/química , Clenbuterol/metabolismo , Clenbuterol/farmacología , Activación Enzimática/efectos de los fármacos , Epinefrina/química , Epinefrina/metabolismo , Epinefrina/farmacología , Transferencia Resonante de Energía de Fluorescencia , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Guanosina Difosfato/metabolismo , Humanos , Cinética , Ligandos , Modelos Moleculares , Movimiento/efectos de los fármacos , Estabilidad Proteica , Receptores Adrenérgicos beta 2/química
7.
Cochrane Database Syst Rev ; 12: CD012993, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084761

RESUMEN

BACKGROUND: Pompe disease is caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). People with infantile-onset disease have either a complete or a near-complete enzyme deficiency; people with late-onset Pompe disease (LOPD) retain some residual enzyme activity. GAA deficiency is treated with an intravenous infusion of recombinant human acid alglucosidase alfa, an enzyme replacement therapy (ERT). Alglucosidase alfa and avalglucosidase alfa are approved treatments, but cipaglucosidase alfa with miglustat is not yet approved. OBJECTIVES: To assess the effects of enzyme replacement therapies in people with late-onset Pompe disease. SEARCH METHODS: We searched the Cochrane Inborn Errors of Metabolism Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched MEDLINE OvidSP, clinical trial registries, and the reference lists of relevant articles and reviews. Date of last search: 21 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of ERT in people with LOPD of any age. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias and the certainty of the evidence (using GRADE). We resolved disagreements through discussion and by consulting a third author. MAIN RESULTS: We included six trials (358 randomised participants) lasting from 12 to 78 weeks. A single trial reported on each comparison listed below. None of the included trials assessed two of our secondary outcomes: need for respiratory support and use of a walking aid or wheelchair. Certainty of evidence was most commonly downgraded for selective reporting bias. Alglucosidase alfa versus placebo (90 participants) After 78 weeks, alglucosidase alfa probably improves the six-minute walk test (6MWT) distance compared to placebo (mean difference (MD) 30.95 metres, 95% confidence interval (CI) 7.98 to 53.92; moderate-certainty evidence) and probably improves respiratory function, measured as the change in per cent (%) predicted forced vital capacity (FVC) (MD 3.55, 95% CI 1.46 to 5.64; moderate-certainty evidence). There may be little or no difference between the groups in occurrence of infusion reactions (risk ratio (RR) 1.21, 95% CI 0.57 to 2.61; low-certainty evidence), quality of life physical component score (MD -1.36 points, 95% CI -5.59 to 2.87; low-certainty evidence), or adverse events (RR 0.94, 95% CI 0.64 to 1.39; low-certainty evidence). Alglucosidase alfa plus clenbuterol versus alglucosidase alfa plus placebo (13 participants) The evidence is very uncertain about the effect of alglucosidase alfa plus clenbuterol compared to alglucosidase alfa plus placebo on: change in 6MWT distance after 52 weeks (MD 34.55 metres, 95% CI-10.11 to 79.21; very low-certainty evidence) and change in % predicted FVC (MD -13.51%, 95% CI -32.44 to 5.41; very low-certainty evidence). This study did not measure infusion reactions, quality of life, and adverse events. Alglucosidase alfa plus albuterol versus alglucosidase alfa plus placebo (13 participants) The evidence is very uncertain about the effect of alglucosidase alfa plus albuterol compared to alglucosidase alfa plus placebo on: change in 6MWT distance after 52 weeks (MD 30.00 metres, 95% CI 0.55 to 59.45; very low-certainty evidence), change in % predicted FVC (MD -4.30%, 95% CI -14.87 to 6.27; very low-certainty evidence), and risk of adverse events (RR 0.67, 95% CI 0.38 to 1.18; very low-certainty evidence). This study did not measure infusion reactions and quality of life. VAL-1221 versus alglucosidase alfa (12 participants) Insufficient information was available about this trial to generate effect estimates measured at one year or later. Compared to alglucosidase alfa, VAL-1221 may increase or reduce infusion-associated reactions at three months, but the evidence is very uncertain (RR 2.80, 95% CI 0.18 to 42.80). This study did not measure quality of life and adverse events. Cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo (125 participants) Compared to alglucosidase alfa plus placebo, cipaglucosidase alfa plus miglustat may make little or no difference to: 6MWT distance at 52 weeks (MD 13.60 metres, 95% CI -2.26 to 29.46); infusion reactions (RR 0.94, 95% CI 0.49 to 1.80); quality of life scores for physical function (MD 1.70, 95% CI -2.13 to 5.53) and fatigue (MD -0.30, 95% CI -2.76 to 2.16); and adverse effects potentially related to treatment (RR 0.83, 95% CI 0.49 to 1.40) (all low-certainty evidence). Cipaglucosidase alfa plus miglustat probably improves % predicted FVC compared to alglucosidase alfa plus placebo (MD 3.10%, 95% CI 1.04 to 5.16; moderate-certainty evidence); however, it may make little or no change in % predicted sniff nasal inspiratory pressure (MD -0.06%, 95% CI -8.91 to 7.71; low-certainty evidence). Avalglucosidase alfa versus alglucosidase alfa (100 participants) After 49 weeks, avalglucosidase alfa probably improves 6MWT compared to alglucosidase alfa (MD 30.02 metres, 95% CI 1.84 to 58.20; moderate-certainty evidence). Avalglucosidase alfa probably makes little or no difference to % predicted FVC compared to alglucosidase alfa (MD 2.43%, 95% CI -0.08 to 4.94; moderate-certainty evidence). Avalglucosidase alfa may make little or no difference to infusion reactions (RR 0.78, 95% CI 0.42 to 1.45), quality of life (MD 0.77, 95% CI -2.09 to 3.63), or treatment-related adverse events (RR 0.92, 95% CI 0.61 to 1.40), all low-certainty evidence. AUTHORS' CONCLUSIONS: One trial compared the effect of ERT to placebo in LOPD, showing that alglucosidase alfa probably improves 6MWT and respiratory function (both moderate-certainty evidence). Avalglucosidase alfa probably improves 6MWT compared with alglucosidase alfa (moderate-certainty evidence). Cipaglucosidase plus miglustat probably improves FVC compared to alglucosidase alfa plus placebo (moderate-certainty evidence). Other trials studied the adjunct effect of clenbuterol and albuterol along with alglucosidase alfa, with little to no evidence of benefit. No significant rise in adverse events was noted with all ERTs. The impact of ERT on some outcomes remains unclear, and longer RCTs are needed to generate relevant information due to the progressive nature of LOPD. Alternative resources, such as post-marketing registries, could capture some of this information.


Asunto(s)
Clenbuterol , Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Terapia de Reemplazo Enzimático , Albuterol
8.
Int Heart J ; 64(5): 901-909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37778993

RESUMEN

Left ventricular assist device in combination with clenbuterol has been demonstrated to significantly improve heart function in patients with advanced heart failure. However, the roles of clenbuterol in mechanical unloading and its underlying mechanism are poorly understood. A rat abdominal heart transplantation model has been developed to mimic mechanical unloading of the heart. The recipient rats were randomly segregated into experimental groups for the daily administration of either saline (the "Trans" group; n = 13) or clenbuterol (2 mg/kg, the "Trans + CB" group; n = 12). Another group of 10 rats served as a treatment mimic control/sham animals (the "Sham" group). All interventions were performed via intraperitoneal injections once daily for 4 weeks. The Trans group animals exhibited myocardial atrophy and dysfunction with decreased expression levels of transient receptor potential channel 3 (TRPC3) and phospholipase C-ß1 (PLC-ß1) at 4 weeks post-transplantation. Administration of clenbuterol improved cardiac function, prevented myocardial atrophy, and restored expression of TRPC3 and PLC-ß1 in the unloaded hearts of the "Trans + CB" animals at 4 weeks post-transplantation. Silencing of the TRPC3 gene by siRNA inhibited the pro-hypertrophic effect of clenbuterol in the rat primary cardiomyocytes in vitro. Furthermore, U73122, an inhibitor of the PLC-ß1/diacylglycerol (DAG) pathway, significantly attenuated clenbuterol-induced upregulation of TRPC3 in cardiomyocytes. These findings suggest that the anti-atrophic effect of clenbuterol may be dependent on the upregulation of TRPC3 through the activation of the PLC-ß1/DAG pathway during mechanical unloading. The results of our study reveal a potential target for the prevention and treatment of mechanical unloading-induced myocardial atrophy.


Asunto(s)
Clenbuterol , Canales de Potencial de Receptor Transitorio , Humanos , Ratas , Animales , Clenbuterol/farmacología , Clenbuterol/metabolismo , Regulación hacia Arriba , Función Ventricular Izquierda/fisiología , Miocitos Cardíacos/metabolismo , Atrofia Muscular , Miocardio/patología
9.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903285

RESUMEN

ß2-agonists are a class of synthetic sympathomimetic drugs with acute poisoning effects if consumed as residues in foods. To improve the efficiency of sample preparation and to overcome matrix-dependent signal suppression in the quantitative analysis of four ß2-agonists (clenbuterol, ractopamine, salbutamol, and terbutaline) residues in fermented ham, an enzyme digestion coupled cation exchange purification method for sample preparation was established using ultra-high performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS). Enzymatic digests were subject to cleanup treatment on three different solid phase extraction (SPE) columns and a polymer-based strong cation resin (SCR) cartridge containing sulfonic resin was found to be optimal compared with silica-based sulfonic acid and polymer sulfonic acid resins based SPEs. The analytes were investigated over the linear range of 0.5 to 10.0 µg/kg with recovery rates of 76.0-102.0%, and a relative standard deviation of 1.8-13.3% (n = 6). The limit of detection (LOD) and the limit of quantification (LOQ) were 0.1 µg/kg and 0.3 µg/kg, respectively. This newly developed method was applied to the detection of ß2-agonist residues in 50 commercial ham products and only one sample was found to contain ß2-agonist residues (clenbuterol at 15.2 µg/kg).


Asunto(s)
Clenbuterol , Cromatografía Líquida de Alta Presión/métodos , Clenbuterol/análisis , Agonistas Adrenérgicos beta/análisis , Espectrometría de Masas en Tándem/métodos , Extracción en Fase Sólida , Digestión
10.
Brain Behav Immun ; 106: 89-99, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35914697

RESUMEN

While inflammation has been implicated in psychopathology, relationships between immune-suppressing processes and psychiatric constructs remain elusive. This study sought to assess whether ß2-agonist clenbuterol (CBL) would attenuate immune activation in adolescents with mood and anxiety symptoms following ex vivo exposure of whole blood to lipopolysaccharide (LPS). Our focus on adolescents aimed to target a critical developmental period when psychiatric conditions often emerge and prior to chronicity effects. To capture a diverse range of immunologic and symptomatologic phenotypes, we included 97 psychotropic-medication free adolescents with mood and anxiety symptoms and 33 healthy controls. All participants had comprehensive evaluations and dimensional assessments of psychiatric symptoms. Fasting whole-blood samples were collected and stimulated with LPS in the presence and absence of CBL for 6 hours, then analyzed for 41 cytokines, chemokines, and hematopoietic growth factors. Comparison analyses used Bonferroni-corrected nonparametric tests. Levels of nine immune biomarkers-including IL-1RA, IL-1ß, IL-6, IP-10, MCP-1, MIP-1α, MIP-1ß, TGF-α, and TNF-α-were significantly reduced by CBL treatment compared to LPS alone. Exploratory factor analysis reduced 41 analytes into 5 immune factors in each experimental condition, and their relationships with psychiatric symptoms were examined as a secondary aim. CBL + LPS Factor 4-comprising EGF, PDGF-AA, PDGF-AB/BB, sCD40L, and GRO-significantly correlated with anticipatory and consummatory anhedonia, even after controlling for depression severity. This study supports the possible inhibitory effect of CBL on immune activation. Using a data-driven method, distinctive relationships between CBL-affected immune biomarkers and dimensional anhedonia were reported, further elucidating the role of ß2-agonism in adolescent affective symptomatology.


Asunto(s)
Anhedonia , Clenbuterol , Biomarcadores , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CXCL10 , Clenbuterol/farmacología , Citocinas/metabolismo , Factor de Crecimiento Epidérmico , Humanos , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-6 , Lipopolisacáridos/farmacología , Factor de Crecimiento Transformador alfa , Factor de Necrosis Tumoral alfa
11.
Mol Biol Rep ; 49(5): 3965-3973, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35226259

RESUMEN

BACKGROUND: Plastic changes of skeletal muscles, such as hypertrophy and atrophy, are dependent on physiological activities and regulated by a variety of signaling pathways, including cyclic adenosine monophosphate (cAMP) pathway. The cAMP inducing agents, such as the ß2-adrenergic agonist clenbuterol, are known to induce muscle hypertrophy, and has been reported to induce slow-to-fast transitions in rat soleus muscle. Theobromine, one of the active components of cacao, functions as an inhibitor of phosphodiesterase and increases cAMP. This study hypothesized that theobromine, like clenbuterol, can induce muscle hypertrophy and influence contractile properties. METHODS AND RESULTS: Male Wistar rats were fed a normal diet or a diet containing 0.05% theobromine for 20 weeks. Using biochemical, anatomical, and physiological techniques, effects of dietary theobromine on skeletal muscles (soleus, extensor digitorum longus, plantaris, and gastrocnemius) were examined. There were no significant differences in body weight, serum levels of proteins and lipids, muscle weights, dry/wet ratio of muscle weights, mitochondrial oxidation enzyme activity of muscles, isometric contractile properties of muscles, and muscle fatigue between control and theobromine-fed rats. Quantitative analysis of mRNA, however, revealed upregulation of myosin heavy chain 2x and myogenic differentiation 1, as previously reported in clenbuterol-treated muscles. CONCLUSION: The long-term theobromine (0.05%) diet in rats had no effect in inducing muscle hypertrophy and in changing contractile properties, although it had some similar effects of clenbuterol on muscle gene expression.


Asunto(s)
Clenbuterol , Agonistas Adrenérgicos beta/metabolismo , Animales , Clenbuterol/análisis , Clenbuterol/metabolismo , Clenbuterol/farmacología , Dieta , Hipertrofia , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Teobromina/análisis , Teobromina/metabolismo , Teobromina/farmacología
12.
J Sep Sci ; 45(24): 4460-4468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36239158

RESUMEN

Exploiting adsorbents with highly efficient extraction performance is of great promise for extracting small organic molecules from biological samples. In this work, a novel Zn2+ -immobilized chitosan@silica hybrid monolith was prepared through a simple self-assembly Zn2+ -immobilization process. Exploited as an adsorbent in solid-phase micro-extraction for extracting trace ß-agonists, the monolith exhibited high extraction efficiencies for salbutamol, clenbuterol, and ractopamine with the enrichment factors approaching 120, 85, and 52, respectively. These could be attributed to the effective interaction between Zn2+ ions and the target molecule via coordination or other intermolecular interactions. Under optimized extraction operations, a sensitive determination was successfully developed coupling with high-performance liquid chromatography-ultraviolet detection. The linear range was 0.17-58.8, 0.12-68.5, and 0.18-65.5 ng/ml for salbutamol, clenbuterol, and ractopamine. The limits of detection of the ß-agonists were from 0.04 to 0.07 ng/ml, and the limits of quantification were from 0.12 to 0.18 ng/ml. The recoveries of spiking in mutton samples were observed in the range of 85.9%-95.7%, with relative standard deviations <8.0% (n = 3). Application tests demonstrated this newly developed determination was practical, accurate, and convenient for detecting trace content ß-agonists in meat.


Asunto(s)
Clenbuterol , Dióxido de Silicio , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión , Albuterol , Zinc
13.
J Sep Sci ; 45(21): 3966-3973, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36040857

RESUMEN

The illegal use of clenbuterol seriously endangers food safety and human health. Accurate monitoring of the illegal use of clenbuterol in livestock can efficiently prevent the clenbuterol residue pork products from entering the consumer market. Thus, in this study, a simple, rapid, and sensitive method for the determination of clenbuterol in swine urine was developed using electromembrane extraction combined with liquid chromatography-tandem mass spectrometry. It should be noted that the electromembrane extraction method presented many advantages of simple operation, fast mass transfer rate, good sample clean-up capability, and less organic solvent consumption. The effect of important factors on the extraction efficiency of clenbuterol was investigated. Under the optimal conditions, good linearity was achieved for clenbuterol over the range of 1-1000 ng/ml (linear correlation [R2 ] = 0.9996). The recoveries of clenbuterol in swine urine at three spiked levels ranged from 83.7% to 110.0% with relative standard deviation values lower than 9.7% (n = 4). The limits of detection and quantification for clenbuterol were 0.07 and 0.25 ng/ml, respectively. These results suggested that the proposed method has great potential for the extraction and determination of trace analyte in a complex sample matrix for monitoring illegal use in livestock.


Asunto(s)
Líquidos Corporales , Clenbuterol , Porcinos , Humanos , Animales , Clenbuterol/análisis , Ganado , Cromatografía Liquida , Espectrometría de Masas , Líquidos Corporales/química , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos
14.
Toxicol Mech Methods ; 32(5): 313-324, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34747310

RESUMEN

Zilpaterol and clenbuterol are two ß-adrenergic agonist drugs used in animal production. Both drugs have anabolic effects with advantages on carcass yield. Meanwhile, zilpaterol is approved for animal feed in authorized countries. Clenbuterol is a banned substance due to the risk of toxicity; however, it is still being used in unknown dose levels in many farm species. Therefore, the use and abuse of these substances should be closely monitored, considering the clenbuterol ability and the not proved yet of zilpaterol to produce reactive oxygen and nitrogen species. Regarding glutathione which is the main intracellular antioxidant plays detoxification functions on liver metabolism; in this work, it is our interest to know the capacity of chitosan-glutathione nanoparticles (CS/GSH-NP) as a complementary source of exogenous GSH to modify the oxide-reduction status on bovine precision-cut liver slice cultures (PCLS) exposed to clenbuterol and zilpaterol. A single drug assay was performed in first instance by adding clenbuterol, zilpaterol, chitosan nanoparticles (CS-NP), and CS/GSH-NP. Then combinate drug assay was carried out by testing clenbuterol and zilpaterol combined with CS-NP or CS/GSH-NP. The results showed that both ß-adrenergic agonists modify in a dose-dependent manner in oxide-reduction response through ROS generation. The activity or content of glutathione peroxidase activity, intracellular GSH, gamma glutamyl-transpeptidase, aspartate aminotrasnferase and alanine aminotrasnferase were modified. The exogenous GSH delivered by nanoparticles could be used to modulate these markers.


Asunto(s)
Quitosano , Clenbuterol , Nanopartículas , Agonistas Adrenérgicos beta , Animales , Antioxidantes , Bovinos , Quitosano/toxicidad , Clenbuterol/toxicidad , Glutatión , Hígado , Nanopartículas/toxicidad , Óxidos , Compuestos de Trimetilsililo
15.
Pflugers Arch ; 473(8): 1213-1227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021780

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X/etiología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Animales , Proteínas de Artrópodos , Atrofia Bulboespinal Ligada al X/metabolismo , Línea Celular , Clenbuterol , Humanos , Ratones , Técnicas de Placa-Clamp , Venenos de Araña
16.
Am J Physiol Endocrinol Metab ; 320(3): E619-E628, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522400

RESUMEN

Prolonged supplementation with the ß2-agonist clenbuterol improves glucose homeostasis in diabetic rodents, likely via ß2-adrenoceptor (ß2-AR)-mediated effects in the skeletal muscle and liver. However, since rodents have, in contrast to-especially diabetic-humans, substantial quantities of brown adipose tissue (BAT) and clenbuterol has affinity to ß1- and ß3-ARs, the contribution of BAT to these improvements is unclear. Therefore, we investigated clenbuterol-mediated improvements in glucose homeostasis in uncoupling protein 1-deficient (UCP1-/-) mice, lacking thermogenic BAT, versus wild-type (WT) mice. Anesthetized WT and UCP1-/- C57Bl/6 mice were injected with saline or clenbuterol and whole body oxygen consumption was measured. Furthermore, male WT and UCP1-/- C57Bl/6 mice were subjected to 17-wk of chow feeding, high-fat feeding, or high-fat feeding with clenbuterol treatment between weeks 13 and 17. Body composition was measured weekly with MRI. Oral glucose tolerance and insulin tolerance tests were performed in week 15 and 17, respectively. Clenbuterol increased oxygen consumption approximately twofold in WT mice. This increase was blunted in UCP1-/- mice, indicating clenbuterol-mediated activation of BAT thermogenesis. High-fat feeding induced diabetogenic phenotypes in both genotypes. However, low-dose clenbuterol treatment for 2 wk significantly reduced fasting blood glucose by 12.9% in WT and 14.8% in UCP1-/- mice. Clenbuterol treatment improved glucose and insulin tolerance in both genotypes compared with HFD controls and normalized to chow-fed control mice independent of body mass and composition alterations. Clenbuterol improved whole body glucose homeostasis independent of UCP1. Given the low human abundancy of BAT, ß2-AR agonist treatment provides a potential novel route for glucose disposal in diabetic humans.NEW & NOTEWORTHY Improvements in whole body glucose homeostasis of rodents upon prolonged ß2-adrenergic agonist supplementation could potentially be attributed to UCP1-mediated BAT thermogenesis. Indeed, we show that acute injection with the ß2-AR agonist clenbuterol induces BAT activation in mice. However, we also demonstrate that prolonged clenbuterol supplementation robustly improves whole body glucose and insulin tolerance in a similar way in both DIO WT and UCP1-/- mice, indicating that ß2-AR agonist supplementation improves whole body glucose homeostasis independent of UCP1-mediated BAT thermogenesis.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Glucosa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Clenbuterol/administración & dosificación , Clenbuterol/farmacología , Dieta Alta en Grasa , Esquema de Medicación , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Homeostasis/genética , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/etiología , Obesidad/patología , Receptores Adrenérgicos beta 2/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética , Factores de Tiempo , Proteína Desacopladora 1/deficiencia
17.
Mol Pain ; 17: 1744806921997206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829907

RESUMEN

Beta 2 adrenergic receptor (ß2 AR) activation in the central and peripheral nervous system has been implicated in nociceptive processing in acute and chronic pain settings with anti-inflammatory and anti-allodynic effects of ß2-AR mimetics reported in several pain states. In the current study, we examined the therapeutic efficacy of the ß2-AR agonist clenbuterol in a rat model of persistent postsurgical hypersensitivity induced by disruption of descending noradrenergic signaling in rats with plantar incision. We used growth curve modeling of ipsilateral mechanical paw withdrawal thresholds following incision to examine effects of treatment on postoperative trajectories. Depletion of spinal noradrenergic neurons delayed recovery of hypersensitivity following incision evident as a flattened slope compared to non-depleted rats (-1.8 g/day with 95% CI -2.4 to -1.085, p < 0.0001). Chronic administration of clenbuterol reduced mechanical hypersensitivity evident as a greater initial intercept in noradrenergic depleted (6.2 g with 95% CI 1.6 to 10.8, p = 0.013) and non-depleted rats (5.4 g with 95% CI 1.2 to 9.6, p = 0.018) with plantar incision compared to vehicle treated rats. Despite a persistent reduction in mechanical hypersensitivity, clenbuterol did not alter the slope of recovery when modeled over several days (p = 0.053) or five weeks in depleted rats (p = 0.64). Systemic clenbuterol suppressed the enhanced microglial activation in depleted rats and reduced the density of macrophage at the site of incision. Direct spinal infusion of clenbuterol failed to reduce mechanical hypersensitivity in depleted rats with incision suggesting that beneficial effects of ß2-AR stimulation in this model are largely peripherally mediated. Lastly, we examined ß2-AR distribution in the spinal cord and skin using in-situ hybridization and IHC. These data add to our understanding of the role of ß2-ARs in the nervous system on hypersensitivity after surgical incision and extend previously observed anti-inflammatory actions of ß2-AR agonists to models of surgical injury.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Clenbuterol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Inmunidad/efectos de los fármacos , Microglía/efectos de los fármacos , Dolor Postoperatorio/tratamiento farmacológico , Herida Quirúrgica/complicaciones , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Clenbuterol/farmacología , Hiperalgesia/etiología , Hiperalgesia/inmunología , Masculino , Neuronas/efectos de los fármacos , Dolor Postoperatorio/etiología , Dolor Postoperatorio/inmunología , Ratas , Ratas Sprague-Dawley
18.
Anal Chem ; 93(23): 8362-8369, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34077199

RESUMEN

Lateral flow immunoassay (LFIA) has emerged as an effective technique in the field of food safety and environmental monitoring. However, sensitive and quantitative detection is still challenging for LFIAs in complex environments. In this work, a dual-model colorimetric/SERS lateral flow immunoassay for ultrasensitive determination of clenbuterol was constructed based on a metallic core-shell Au/Au nanostar acting as a multifunction tag. Raman reporter molecules are located between the core (AuNP) and shell (Au nanostar) to form a sandwich structure, which contributes to eliminate the environmental interference and improve the detection stability. In addition, the Au/Au nanostar provides a much higher Raman enhancement due to the presence of sharp tips and larger surface roughness in comparison with gold nanoparticles (AuNPs). Thus, on the basis of the antibody-antigen interaction, the dual-model immunoassay can produce strong colorimetric and surface-enhanced Raman spectroscopy (SERS) signals for highly sensitive detection of the target analyte, clenbuterol. Under optimal conditions, clenbuterol could be detected by the colorimetric model with a visual detection limit of 5 ng/mL. Meanwhile, the SERS signal of the Au/Au nanostar was accumulated on the test line for the SERS model detection with a quantitative detection limit as low as 0.05 ng/mL, which is at least 200-fold lower than that of the traditional AuNPs-based immunoassay. Furthermore, recovery rates of the proposed method in food samples were 86-110%. This dual-model immunoassay provides an effective tool for antibiotic residues analysis and demonstrates a broad potential for future applications in food safety monitoring.


Asunto(s)
Clenbuterol , Nanopartículas del Metal , Colorimetría , Oro , Inmunoensayo , Límite de Detección , Espectrometría Raman
19.
Neurobiol Learn Mem ; 185: 107539, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34648950

RESUMEN

The basolateral complex of the amygdala (BLA) is critically involved in modulation of memory by stress hormones. Noradrenergic activation of the BLA enhances memory consolidation and plays a necessary role in the enhancing or impairing effects of stress hormones on memory. The BLA is not only involved in the consolidation of aversive memories but can regulate appetitive memory formation as well. Extensive evidence suggests that the BLA is a modulatory structure that influences consolidation of arousing memories through modulation of plasticity and expression of plasticity-related genes, such as the activity regulated cytoskeletal-associated (Arc/Arg 3.1) protein, in efferent brain regions. ARC is an immediate early gene whose mRNA is localized to the dendrites and is necessary for hippocampus-dependent long-term potentiation and long-term memory formation. Post-training intra-BLA infusions of the ß-adrenoceptor agonist, clenbuterol, enhances memory for an aversive task and increases dorsal hippocampus ARC protein expression following training on that task. To examine whether this function of BLA noradrenergic signaling extends to the consolidation of appetitive memories, the present studies test the effect of post-training intra-BLA infusions of clenbuterol on memory for the appetitive conditioned place preference (CPP) task and for effects on ARC protein expression in hippocampal synapses. Additionally, the necessity of increased hippocampal ARC protein expression was also examined for long-term memory formation of the CPP task. Immediate post-training intra-BLA infusions of clenbuterol (4 ng/0.2 µL) significantly enhanced memory for the CPP task. This same memory enhancing treatment significantly increased ARC protein expression in dorsal, but not ventral, hippocampal synaptic fractions. Furthermore, immediate post-training intra-dorsal hippocampal infusions of Arc antisense oligodeoxynucleotides (ODNs), which reduce ARC protein expression, prevented long-term memory formation for the CPP task. These results suggest that noradrenergic activity in the BLA influences long-term memory for aversive and appetitive events in a similar manner and the role of the BLA is conserved across classes of memory. It also suggests that the influence of the BLA on hippocampal ARC protein expression and the role of hippocampal ARC protein expression are conserved across classes of emotionally arousing memories.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Complejo Nuclear Basolateral/fisiología , Clenbuterol/farmacología , Condicionamiento Operante/fisiología , Proteínas del Citoesqueleto/fisiología , Hipocampo/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos
20.
Analyst ; 146(20): 6323-6332, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34554156

RESUMEN

A nitrogen-doped Fe-MOF shows a high specific surface area and excellent electrical conductivity after high temperature carbonization. A novel electrochemical sensor based on a N@Fe-MOF@C loaded dual-template molecularly imprinted polymer (DTMIP) modified glassy carbon electrode (GCE) was proposed for the rapid and ultra-sensitive simultaneous detection of clenbuterol hydrochloride (CLB) and ractopamine (RAC). N@Fe-MOF@C combined with a MIP significantly enhanced the electrical signal. Cyclic voltammetry (CV) was used to detect CLB and RAC. The electrochemical polymerization was conducted with O-phenylenediamine as the functional monomer and CLB and RAC as template molecules. The factors affecting the sensor response were optimized. Under the optimal experimental conditions, the CV current response showed a linear range of 10-12-8 × 10-9 M for both CLB and RAC, and the detection limit (LOD) for both CLB and RAC was 3.03 × 10-13 M (S/N = 3). This electrochemical sensing system has high sensitivity, selectivity, excellent reproducibility, repeatability and stability. The recoveries of the actual samples (97.4%-101.2%) and reasonable relative standard deviations (RSDs) (1.06%-3.17%) indicate the practicability of the sensor system. The system has high application value in the rapid detection of CLB and RAC in clenbuterol hydrochloride tablets, human urine and raw pork.


Asunto(s)
Clenbuterol , Impresión Molecular , Técnicas Electroquímicas , Electrodos , Humanos , Límite de Detección , Polímeros Impresos Molecularmente , Fenetilaminas , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA