RESUMEN
In the latter half of gestation in the mare, progesterone concentrations decline to near undetectable levels while other 5α-reduced pregnanes are elevated. Of these, 5α-dihydroprogesterone and allopregnanolone have been reported to have important roles in either pregnancy maintenance or fetal quiescence. During this time, the placenta is necessary for pregnane metabolism, with the enzyme 5α-reductase being required for the conversion of progesterone to 5α-dihydroprogesterone. The objectives of this study were to assess the effects of a 5α-reductase inhibitor, dutasteride on pregnane metabolism (pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol and allopregnanolone), to determine circulating dutasteride concentrations and to assess effects of dutasteride treatment on gestational parameters. Pregnant mares (n = 5) received dutasteride (0.01 mg/kg/day, IM) and control mares (n = 4) received vehicle alone from 300 to 320 days of gestation or until parturition. Concentrations of dutasteride, pregnenolone, progesterone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol, and allopregnanolone were evaluated via liquid chromatography-tandem mass spectrometry. Samples were analyzed as both days post treatment and as days prepartum. No significant treatment effects were detected in pregnenolone, 5α-dihydroprogesterone, 20α-hydroxy-5α-pregnan-3-one, 5α-pregnane-3ß,20α-diol or allopregnanolone for either analysis; however, progesterone concentrations were increased (P < 0.05) sixfold in dutasteride-treated mares compared to control mares. Dutasteride concentrations increased in the treated mares, with a significant correlation (P < 0.05) between dutasteride concentrations and pregnenolone or progesterone concentrations. Gestational length and neonatal outcomes were not significantly altered in dutasteride-treated mares. Although 5α-reduced metabolites were unchanged, these data suggest an accumulation of precursor progesterone with inhibition of 5α-reductase, indicating the ability of dutasteride to alter progesterone metabolism.
Asunto(s)
Colestenona 5 alfa-Reductasa/química , Dutasterida/farmacología , Feto/metabolismo , Placenta/metabolismo , Pregnanos/metabolismo , Inhibidores de 5-alfa-Reductasa/farmacología , Animales , Colestenona 5 alfa-Reductasa/sangre , Femenino , Feto/efectos de los fármacos , Edad Gestacional , Caballos , Parto , Placenta/efectos de los fármacos , EmbarazoRESUMEN
This study aimed to investigate the beneficial effects of A. melanocarpa on testosterone propionate (TP)-induced benign prostatic hyperplasia (BPH) in Wistar rats. Moreover, the bioactive constituents in the extract were determined using LC/MS and HPLC analyses. The dried fruits of A. melanocarpa were extracted using accelerated solvent extraction (ASE) under different extract conditions (temperature, 30 C or 100 C; extract solvent, 60% or 100% ethanol) to yield four extracts (T1~T4). Of the four A. melanocarpa extracts, T1 extracted under the condition of 100% ethanol/low temperature (30 C) exhibited the greatest inhibitory activity on TP-induced prostatic hyperplasia in rats. The administration of T1 (100 mg/kg body weight, p.o.) for six weeks attenuated TP-induced prostate enlargement and reduced the levels of dihydrotestosterone (DHT) and 5α-reductase in both serum and prostate tissue. The suppression of PCNA mRNA expression in prostate tissue was remarkable in T1-treated rats. In LC/MS analysis, the levels of main anthocyanins and phenolics were significantly higher in T1 than in the other extracts. Furthermore, the quantitative study showed that the contents of cyanidin-3-glucose and cyanidin-3-xylose in T1 exhibited 1.27~1.67 and 1.10~1.26 folds higher compared to those in the other extracts. These findings demonstrated that A. melanocarpa extract containing anthocyanins as bioactive constituents attenuated the development of testosterone-induced prostatic hyperplasia, and suggested that this extract has therapeutic potential to treat prostate enlargement and BPH.
Asunto(s)
Antocianinas/farmacología , Extracción Líquido-Líquido/métodos , Photinia/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Hiperplasia Prostática/tratamiento farmacológico , Testosterona/efectos adversos , Animales , Antocianinas/aislamiento & purificación , Colestenona 5 alfa-Reductasa/sangre , Colestenona 5 alfa-Reductasa/metabolismo , Dihidrotestosterona/sangre , Dihidrotestosterona/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , TemperaturaRESUMEN
OBJECTIVE: In animal models, early life exposure to major environmental challenges such as malnutrition and stress results in persisting cardiometabolic, neuroendocrine and affective effects. While such effects have been associated with pathogenesis, the widespread occurrence of 'developmental programming' suggests it has adaptive function. Glucocorticoids may mediate 'programming' and their metabolism is known to be affected by early life events in rodents. To examine these relationships in humans, cortisol metabolism and cardiometabolic disease manifestations were examined in Holocaust survivors in relation to age at exposure and affective dysfunction, notably lifetime posttraumatic stress disorder (PTSD). METHODS: Fifty-one Holocaust survivors and 22 controls without Axis I disorder collected 24-h urine samples and were evaluated for psychiatric disorders and cardiometabolic diagnoses. Corticosteroids and their metabolites were assayed by gas chromatography-mass spectroscopy (GC-MS); cortisol was also measured by radioimmunoassay (RIA). RESULTS: Holocaust survivors showed reduced cortisol by RIA, and decreased levels of 5alpha-tetrahydrocortisol (5alpha-THF) and total glucocorticoid production by GC-MS. The latter was associated with lower cortisol metabolism by 5alpha-reductase and 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type-2. The greatest decrements were associated with earliest age of Holocaust exposure and less severe PTSD symptomatology. Cardiometabolic manifestations were associated with decreased 11beta-HSD-2 activity. In controls, 5alpha-reductase was positively associated with trauma-related symptoms (i.e., to traumatic exposures unrelated to the Holocaust). CONCLUSION: Extreme malnutrition and related stress during development is associated with long-lived alterations in specific pathways of glucocorticoid metabolism. These effects may be adaptive and link with lower risks of cardiometabolic and stress-related disorders in later life.