Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.025
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Microbiol ; 74: 409-430, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32667838

RESUMEN

Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.


Asunto(s)
Bacterias/metabolismo , Interacciones Microbianas , Compuestos Orgánicos Volátiles/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Agentes de Control Biológico , Eucariontes/fisiología , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Plantas/microbiología , Compuestos Orgánicos Volátiles/química
2.
Proc Natl Acad Sci U S A ; 119(15): e2116576119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377807

RESUMEN

In studies of vision and audition, stimuli can be chosen to span the visible or audible spectrum; in olfaction, the axes and boundaries defining the analogous odorous space are unknown. As a result, the population of olfactory space is likewise unknown, and anecdotal estimates of 10,000 odorants have endured. The journey a molecule must take to reach olfactory receptors (ORs) and produce an odor percept suggests some chemical criteria for odorants: a molecule must 1) be volatile enough to enter the air phase, 2) be nonvolatile and hydrophilic enough to sorb into the mucous layer coating the olfactory epithelium, 3) be hydrophobic enough to enter an OR binding pocket, and 4) activate at least one OR. Here, we develop a simple and interpretable quantitative model that reliably predicts whether a molecule is odorous or odorless based solely on the first three criteria. Applying our model to a database of all possible small organic molecules, we estimate that at least 40 billion possible compounds are odorous, six orders of magnitude larger than current estimates of 10,000. With this model in hand, we can define the boundaries of olfactory space in terms of molecular volatility and hydrophobicity, enabling representative sampling of olfactory stimulus space.


Asunto(s)
Odorantes , Olfato , Compuestos Orgánicos Volátiles , Animales , Humanos , Aprendizaje Automático , Modelos Teóricos , Receptores Odorantes , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/clasificación , Volatilización
3.
Chem Senses ; 492024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38386845

RESUMEN

Many volatile organic compounds (VOCs) are used to produce various commercial products with aromas mimicking natural products. The VOCs responsible for aromas have been identified from many natural products. The current major strategy is to analyze chemical compositions and aroma qualities of individual VOCs using gas chromatography/mass spectrometry (GC/MS) and GC-olfactometry. However, such analyses cannot determine whether candidate VOCs contribute to the characteristic aroma in mixtures of many VOCs. In this study, we developed a GC/MS-based VOC collection/omission system that can modify the VOC compositions of samples easily and rapidly. The system is composed of GC/MS with a switching unit that can change gas flow routes between MS and a VOC collection device. We first applied this system to prepare gas samples for omission tests, and the aroma qualities of VOC mixtures with and without some VOCs were evaluated by panelists. If aroma qualities were different between the 2 samples, the omitted VOCs were likely key odorants. By collecting VOCs in a gas bag attached to the collection device and transferring some VOCs to MS, specific VOCs could be omitted easily from the VOC mixture. The system could prepare omission samples without chemical identification, preparation of each VOC, and laborious techniques for mixing VOCs, thus overcoming the limitations of previous methods of sample preparation. Finally, the system was used to prepare artificial aromas by replacing VOC compositions between different samples for screening of key odorants. In conclusion, the system developed here can improve aroma research by identifying key odorants from natural products.


Asunto(s)
Productos Biológicos , Compuestos Orgánicos Volátiles , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Olfatometría/métodos
4.
Chem Senses ; 492024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319120

RESUMEN

Chemical information in canid urine has been implicated in territoriality and influences the spacing of individuals. We identified the key volatile organic compound (VOC) components in dingo (Canis lupus dingo) urine and investigated the potential role of scents in territorial spacing. VOC analysis, using headspace gas chromatography-mass spectrometry (GC-MS), demonstrated that the information in fresh urine from adult male dingoes was sufficient to allow statistical classification into age categories. Discriminant function analyses demonstrated that the relative amounts or combinations of key VOCs from pre-prime (3-4 years), prime (5-9 years), and post-prime (≥10 years) males varied between these age categories, and that scents exposed to the environment for 4 (but not 33) days could still be classified to age categories. Further, a field experiment showed that dingoes spent less time in the vicinity of prime male dingo scents than other scents. Collectively, these results indicate that age-related scent differences may be discriminable by dingoes. Previous authors have suggested the potential to use scent as a management tool for wild canids by creating an artificial territorial boundary/barrier. Our results suggest that identifying the specific signals in prime-age male scents could facilitate the development of scent-based tools for non-lethal management.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Humanos , Masculino , Recién Nacido , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Feromonas , Cromatografía de Gases y Espectrometría de Masas
5.
Adv Appl Microbiol ; 127: 1-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763526

RESUMEN

In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.


Asunto(s)
Microbiota , Compuestos Orgánicos Volátiles , Humanos , Ecosistema , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Nariz Electrónica , Industrias
6.
Rapid Commun Mass Spectrom ; 38(1): e9655, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38073203

RESUMEN

RATIONALE: The aroma profile of food is a complex mixture of volatile compounds that constitutes a major component of the overall eating experience. The food service industry and chefs therefore constantly seek ways to investigate and thereby enhance the aroma profile. Oven cooking, sous vide and pan fry are three cooking methods of beef commonly practised by chefs. Near real-time analysis of volatile compounds from these three cooking methods will provide insight into respective volatile fingerprints and help improve cooking techniques. METHODS: Volatile compounds from three beef cooking methods were captured using an in-house sol-gel based solid phase microextraction (SPME) method and analysed using direct analysis in real-time mass spectrometry (DART-MS). A volatile organic compound (VOC) standard was used to demonstrate successful implementation of the sol-gel coating technique. Volatile features discriminating the three cooking methods were shortlisted and statistically assessed by univariate and multivariate analyses. RESULTS: The VOC standard was successfully adsorbed by the sol-gel method and detected by DART-MS. Hierarchical cluster analysis clearly demarcated three beef cooking methods based on their volatile fingerprints. Out of 65 significant features differentiating the cooking methods, 50 were at highest concentrations from pan-fry cooking only, followed by 14 with highest concentrations from oven cooking followed by pan frying. Sous vide followed by pan frying showed lowest concentrations of almost all volatile features. CONCLUSIONS: The sol-gel-based solid-phase microextraction technique combined with DART-MS was successful in differentiating beef cooking methods based on their volatile fingerprints. A workflow for rapid assessment of the volatile profile from beef cooking methods was established, providing a baseline to further explore volatile profiles from other key ingredients.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Animales , Bovinos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/química , Espectrometría de Masas/métodos , Culinaria
7.
Environ Sci Technol ; 58(17): 7493-7504, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38637508

RESUMEN

Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 µg/m3 to 2.3 µg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.


Asunto(s)
Carbono , Carbono/química , Viscosidad , Compuestos Orgánicos Volátiles/química , Luz , Atmósfera/química , Humo
8.
Environ Sci Technol ; 58(18): 8086-8095, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38666813

RESUMEN

Secondary pollution remains a critical challenge for the catalytic destruction of chlorinated volatile organic compounds (CVOCs). By employing experimental studies and theoretical calculations, we provide valuable insights into the catalytic behaviors exhibited by ceria rods, cubes, and octahedra for monochloromethane (MCM) destruction, shedding light on the elementary reactions over facet-dependent CeO2. Our findings demonstrate that CeO2 nanorods with the (110) facet exhibit the best performance in MCM destruction, and the role of vacancies is mainly to form a longer distance (4.63 Å) of frustrated Lewis pairs (FLPs) compared to the stoichiometric surface, thereby enhancing the activation of MCM molecules. Subsequent molecular orbital analysis showed that the adsorption of MCM mainly transferred electrons from the 3σ and 4π* orbitals to the Ce 4f orbitals, and the activation was mainly caused by weakening of the 3σ bonding orbitals. Furthermore, isotopic experiments and theoretical calculations demonstrated that the hydrogen chloride generated is mainly derived from methyl in MCM rather than from water, and the primary function of water is to form excess saturated H on the surface, facilitating the desorption of generated hydrogen chloride.


Asunto(s)
Oxígeno , Catálisis , Oxígeno/química , Cerio/química , Adsorción , Compuestos Orgánicos Volátiles/química
9.
Environ Sci Technol ; 58(9): 4428-4437, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38400916

RESUMEN

The adsorption and activation of pollutant molecules and oxygen play a critical role in the oxidation reaction of volatile organic compounds (VOCs). In this study, superior adsorption and activation ability was achieved by modulating the interaction between Pt nanoparticles (NPs) and UiO-66 (U6) through the spatial position effect. Pt@U6 exhibits excellent activity in toluene, acetone, propane, and aldehyde oxidation reactions. Spectroscopic studies, 16O2/18O2 kinetic isotopic experiments, and density functional theory (DFT) results jointly reveal that the encapsulated Pt NPs of Pt@U6 possess higher electron density and d-band center, which is conducive for the adsorption and dissociation of oxygen. The toluene oxidation reaction and DFT results indicate that Pt@U6 is more favorable to activate the C-H of toluene and the C═C of maleic anhydride, while Pt/U6 with lower electron density and d-band center exhibits a higher oxygen dissociation temperature and higher reactant activation energy barriers. This study provides a deep insight into the architecture-performance relation of Pt-based catalysts for the catalytic oxidation of VOCs.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Ácidos Ftálicos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Tolueno/química , Oxígeno
10.
Environ Sci Technol ; 58(17): 7672-7682, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639327

RESUMEN

The development of efficient technologies for the synergistic catalytic elimination of NOx and chlorinated volatile organic compounds (CVOCs) remains challenging. Chlorine species from CVOCs are prone to catalyst poisoning, which increases the degradation temperature of CVOCs and fails to balance the selective catalytic reduction of NOx with the NH3 (NH3-SCR) performance. Herein, synergistic catalytic elimination of NOx and chlorobenzene has been originally demonstrated by using phosphotungstic acid (HPW) as a dechlorination agent to collaborate with CeO2. The conversion of chlorobenzene was over 80% at 270 °C, and the NOx conversion and N2 selectivity reached over 95% at 270-420 °C. HPW not only allowed chlorine species to leave as inorganic chlorine but also enhanced the BroÌ·nsted acidity of CeO2. The NH4+ produced in the NH3-SCR process can effectively promote the dechlorination of chlorobenzene at low temperatures. HPW remained structurally stable in the synergistic reaction, resulting in good water resistance and long-term stability. This work provides a cheaper and more environmentally friendly strategy to address chlorine poisoning in the synergistic reaction and offers new guidance for multipollutant control.


Asunto(s)
Clorobencenos , Catálisis , Clorobencenos/química , Compuestos Orgánicos Volátiles/química , Cloro/química , Cerio/química , Halogenación
11.
Environ Sci Technol ; 58(20): 8846-8856, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728579

RESUMEN

Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.


Asunto(s)
Oxidación-Reducción , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Carbón Orgánico/química , Cobalto/química , Adsorción , Carbono/química
12.
Environ Sci Technol ; 58(21): 9381-9392, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38747138

RESUMEN

Designing suitable catalysts for efficiently degrading volatile organic compounds (VOCs) is a great challenge due to the distinct variety and nature of VOCs. Herein, the suitability of different typical VOCs (toluene and acetone) over Pt-based catalysts and Mn2O3 was investigated carefully. The activity of Mn2O3 was inferior to Pt-loaded catalysts in toluene oxidation but showed superior ability for destroying acetone, while Pt loading could boost the catalytic activity of Mn2O3 for both acetone and toluene. This suitability could be determined by the physicochemical properties of the catalysts and the structure of the VOC since toluene destruction activity is highly reliant on Pt0 in the metallic state and linearly correlated with the amount of surface reactive oxygen species (Oads), while the crucial factor that affects acetone oxidation is the mobility of lattice oxygen (Olat). The Pt/Mn2O3 catalyst shows highly active Pt-O-Mn interfacial sites, favoring the generation of Oads and promoting Mn-Olat mobility, leading to its excellent performance. Therefore, the design of abundant active sites is an effective means of developing highly adaptive catalysts for the oxidation of different VOCs.


Asunto(s)
Oxidación-Reducción , Platino (Metal) , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Platino (Metal)/química , Óxidos/química , Compuestos de Manganeso/química
13.
Environ Sci Technol ; 58(17): 7662-7671, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38578018

RESUMEN

Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.


Asunto(s)
Oxidación-Reducción , Tolueno , Catálisis , Tolueno/química , Calor , Luz , Titanio/química , Platino (Metal)/química , Compuestos Orgánicos Volátiles/química
14.
Environ Sci Technol ; 58(25): 11105-11117, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38866390

RESUMEN

Volatile chemical products (VCPs) are increasingly recognized as significant sources of volatile organic compounds (VOCs) in urban atmospheres, potentially serving as key precursors for secondary organic aerosol (SOA) formation. This study investigates the formation and physicochemical transformations of VCP-derived SOA, produced through ozonolysis of VOCs evaporated from a representative room deodorant air freshener, focusing on the effects of aerosol evaporation on its molecular composition, light absorption properties, and reactive oxygen species (ROS) generation. Following aerosol evaporation, solutes become concentrated, accelerating reactions within the aerosol matrix that lead to a 42% reduction in peroxide content and noticeable browning of the SOA. This process occurs most effectively at moderate relative humidity (∼40%), reaching a maximum solute concentration before aerosol solidification. Molecular characterization reveals that evaporating VCP-derived SOA produces highly conjugated nitrogen-containing products from interactions between existing or transformed carbonyl compounds and reduced nitrogen species, likely acting as chromophores responsible for the observed brownish coloration. Additionally, the reactivity of VCP-derived SOA was elucidated through heterogeneous oxidation of sulfur dioxide (SO2), which revealed enhanced photosensitized sulfate production upon drying. Direct measurements of ROS, including singlet oxygen (1O2), superoxide (O2•-), and hydroxyl radicals (•OH), showed higher abundances in dried versus undried SOA samples under light exposure. Our findings underscore that drying significantly alters the physicochemical properties of VCP-derived SOA, impacting their roles in atmospheric chemistry and radiative balance.


Asunto(s)
Aerosoles , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Oxidación-Reducción , Contaminantes Atmosféricos/química , Especies Reactivas de Oxígeno/química , Atmósfera/química
15.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38185880

RESUMEN

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Asunto(s)
Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Ozono , Compuestos Orgánicos Volátiles , Monoterpenos/química , Nitratos/química , Aerosoles/análisis , Compuestos Orgánicos Volátiles/química
16.
Macromol Rapid Commun ; 45(10): e2300730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407503

RESUMEN

Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.


Asunto(s)
Polímeros , Polímeros/química , Porosidad , Estructuras Metalorgánicas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Polvos/química , Sustancias Explosivas/análisis , Sustancias Explosivas/química , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Propiedades de Superficie
17.
J Chem Ecol ; 50(3-4): 85-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246946

RESUMEN

Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.


Asunto(s)
Dimetilpolisiloxanos , Solventes , Compuestos Orgánicos Volátiles , Dimetilpolisiloxanos/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Solventes/química , Cromatografía de Gases y Espectrometría de Masas
18.
J Chem Ecol ; 50(3-4): 129-142, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195852

RESUMEN

Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-ß-ocimene, isomers of α and ß-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.


Asunto(s)
Monoterpenos Acíclicos , Alquenos , Cetonas , Ozono , Sesquiterpenos , Compuestos Orgánicos Volátiles , Ozono/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo , Alquenos/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Atmósfera/química , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos Ciclohexánicos/química , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis
19.
Environ Res ; 251(Pt 1): 118472, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452912

RESUMEN

Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Oxidación-Reducción
20.
Biotechnol Appl Biochem ; 71(3): 670-680, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444172

RESUMEN

Piper longum L. (long pepper) is an economically and industrially important medicinal plant. However, the characterization of its volatiles has only been analyzed by gas chromatography-mass spectrometry (GC-MS). In the present study, precise characterization of P. longum fruit volatiles has been performed for the first time through advanced two-dimensional gas chromatography-time-of-flight spectrometry (GC×GC-TOFMS). A total of 146 constituents accounting for 93.79% were identified, of which 30 were reported for the first time. All these constituents were classified into alcohols (4.5%), alkanes (8.9%), alkenes (6.71%), esters (6.15%), ketones (0.58%), monoterpene hydrocarbons (1.64%), oxygenated monoterpenes (2.24%), sesquiterpene hydrocarbons (49.61%), oxygenated sesquiterpenes (13.03%), phenylpropanoid (0.23%), and diterpenes (0.2%). Among all the classes, sesquiterpene hydrocarbons were abundant, with germacrene-D (2.87% ± 0.01%) as the major one, followed by 8-heptadecene (2.69% ± 0.03%), ß-caryophyllene (2.43% ± 0.03%), n-heptadecane (2.4% ± 0.04%), n-pentadecane (2.11% ± 0.05%), and so forth. Further, 20 constituents were observed to be coeluted and separated precisely in the two-dimensional column. The investigation provides an extensive metabolite profiling of P. longum fruit volatiles, which could be helpful to improve its therapeutic potential.


Asunto(s)
Frutas , Cromatografía de Gases y Espectrometría de Masas , Piper , Piper/química , Piper/metabolismo , Frutas/química , Frutas/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA