Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.873
Filtrar
Más filtros

Intervalo de año de publicación
1.
Anal Chem ; 96(23): 9704-9712, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38819721

RESUMEN

Due to the commonly low content of biomarkers in diseases, increasing the sensitivity of electrochemiluminescence (ECL) systems is of great significance for in vitro ECL diagnosis and biodetection. Although dissolved O2 (DO) has recently been considered superior to H2O2 as a coreactant in the most widely used luminol ECL systems owing to its improved stability and less biotoxicity, it still has unsatisfactory ECL performance because of its ultralow reactivity. In this study, an effective plasmonic luminol-DO ECL system has been developed by complexing luminol-capped Ag nanoparticles (AgNPs) with plasma-treated Fe single-atom catalysts (Fe-SACs) embedded in graphitic carbon nitride (g-CN) (pFe-g-CN). Under optimal conditions, the performance of the resulting ECL system could be markedly increased up to 1300-fold compared to the traditional luminol-DO system. Further investigations revealed that duple binding sites of pFe-g-CN and plasmonically induced hot holes that disseminated from AgNPs to g-CN surfaces lead to facilitate significantly the luminous reaction process of the system. The proposed luminol-DO ECL system was further employed for the stable and ultrasensitive detection of prostate-specific antigen in a wide linear range of 1.0 fg/mL to 1 µg/mL, with a pretty low limit of detection of 0.183 fg/mL.


Asunto(s)
Técnicas Electroquímicas , Hierro , Mediciones Luminiscentes , Luminol , Nanopartículas del Metal , Oxígeno , Plata , Luminol/química , Catálisis , Oxígeno/química , Nanopartículas del Metal/química , Hierro/química , Plata/química , Humanos , Antígeno Prostático Específico/metabolismo , Antígeno Prostático Específico/química , Grafito/química , Límite de Detección , Dominio Catalítico , Compuestos de Nitrógeno/química
2.
Anal Chem ; 96(21): 8682-8688, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38757179

RESUMEN

Programming ultrasensitive and stimuli-responsive DNAzyme-based probes holds great potential for on-demand biomarker detection. Here, an optically triggered DNAzyme platform was reported for on-demand activation-sensitive electrochemiluminescence (ECL) c-myc mRNA analysis. In this design, the sensing and recognition function of the split DNAzyme (SDz) probe was silent by engineering a blocking sequence containing a photocleavable linker (PC-linker) group at a defined site that could be indirectly cleaved by 302 nm ultraviolet (UV) light. When the SDz probes were assembled on the Au nanoparticles and potassium (K) element doped graphitic carbon nitride nanosheet (K-doped g-C3N4) covered electrode, UV light activation induces the configurational switching and consequently the formation of an active DNAzyme probe with the help of target c-myc mRNA, allowing the cleavage of the substrate strand by magnesium ions (Mg2+). Thus, the release of a ferrocene (Fc)-labeled DNAzyme 2 strand contributed to an extreme ECL signal recovery. In the meantime, the released target c-myc mRNA combined another inactive SDz motif to form active DNAzyme and repeat the cyclic cleavage reaction, resulting in the signal amplification. Furthermore, according to the responses toward two other designed nPC-SDz and m-SDz probes, we demonstrated that controlled UV light mediated photoactivation of the DNAzyme biosensor "on demand" effectively constrained the ECL signal to the mRNA of interest. Moreover, false positive signals could also be avoided due to such a photoactivation design with UV light. Therefore, this study provided a simple methodology that may be broadly applicable for investigating the mRNA-associated physiological events that were difficult to access using traditional DNAzyme probes.


Asunto(s)
ADN Catalítico , Técnicas Electroquímicas , Mediciones Luminiscentes , ARN Mensajero , ADN Catalítico/metabolismo , ADN Catalítico/química , Técnicas Electroquímicas/métodos , ARN Mensajero/análisis , Humanos , Rayos Ultravioleta , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Procesos Fotoquímicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Grafito/química , Límite de Detección , Compuestos de Nitrógeno
3.
Chem Res Toxicol ; 37(1): 72-80, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176075

RESUMEN

Fabrication of a metal-organic framework-based photocatalyst has been gaining much interest due to its higher surface area and reasonable band gap, enhancing its photocatalytic activity. This study attempted a facile synthesis of the hybrid photocatalyst UiO-66 doped with graphitic carbon nitride (GCN) by a simple solvothermal method. This composite minimized the drawback related to photogenerated charge transfer and recombination and helped the absorption of visible light. The material was investigated by using various instrumental techniques. In this work, ciprofloxacin (CIP), a fluoroquinolone drug, was chosen as a target micropollutant, and a photodegradation experiment was carried out by using UiO-66, GCN, and UiO-66/GCN under a visible light source, which exhibited 81.85, 69.48, and 93.60% of degradation, respectively. Finally, liquid chromatography mass spectrometry analysis and theoretical computation were carried out to identify the CIP degradation mechanism, and T.E.S.T. software was used to investigate the toxicity of the intermediate products. Apart from photocatalytic activity, the prepared material was also tested for its antibacterial properties against Staphylococcus aureus and Escherichia coli.


Asunto(s)
Ciprofloxacina , Grafito , Estructuras Metalorgánicas , Compuestos de Nitrógeno , Ácidos Ftálicos , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Escherichia coli , Luz
4.
J Exp Biol ; 227(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563292

RESUMEN

Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Respuesta al Choque Térmico , Simbiosis , Antozoos/fisiología , Antozoos/metabolismo , Animales , Dinoflagelados/fisiología , Dinoflagelados/metabolismo , Respuesta al Choque Térmico/fisiología , Nutrientes/metabolismo , Nitrógeno/metabolismo , Compuestos de Nitrógeno/metabolismo , Agua de Mar/química , Calor , Aminoácidos/metabolismo
5.
Phys Chem Chem Phys ; 26(18): 14018-14036, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683598

RESUMEN

In this study, the potential of aluminum nitride (h-AlN), boron nitride (h-BN) and silicon carbide (h-SiC) nanosheets as the drug delivery systems (DDS) of isoniazid (INH) was scrutinized through density functional theory (DFT) and molecular dynamic (MD) simulations. We performed DFT periodic calculations on the geometry and electronic features of nanosheets adsorbed with INH by the DFT functional (DZP/GGA-PBE) employed in the SIESTA code. In the energetically favorable model, an oxygen atom of the C-O group of the INH molecule interacts with a Si atom of the h-SiC at 2.077 Å with an interaction energy of -1.361 eV. Charge transfer (CT) calculation by employing the Mulliken, Hirshfeld and Voronoi approaches reveals that the monolayers and drug molecules act as donors and acceptors, respectively. The density of states (DOS) calculations indicate that the HOMO-LUMO energy gap (HLG) of the h-SiC nanosheet declines significantly from 2.543 to 1.492 eV upon the adsorption of the INH molecule, which causes an electrical conductivity increase and then produces an electrical signal. The signal is linked to the existence of INH, demonstrating that h-SiC may be an appropriate sensor for INH sensing. The decrease in HLG for the interaction of INH and h-SiC is the uppermost (up to 41%) representing the uppermost sensitivity, whereas the sensitivity trend is σ(h-SiC) > σ(h-AlN) > σ(h-BN). Quantum theory of atoms in molecules (QTAIM) investigations is employed to scrutinize the nature of the INH/nanosheet interactions. The QTAIM analysis reveals that the interaction of the INH molecule and h-SiC has a partially covalent nature, while INH/h-AlN model electrostatic interaction occurs in the system and noncovalent and electrostatic interaction for the INH/h-BN model. Finally, the state-of-the-art DFT-MD simulations utilized in this study can mimic ambient conditions. The results obtained from the MD simulation show that it takes more time to bond the INH drug and h-SiC, and the INH/h-SiC system becomes stable. The results of the current research demonstrate the potential of h-SiC as a suitable sensor and drug delivery platform for INH drugs to remedy tuberculosis.


Asunto(s)
Compuestos de Boro , Compuestos Inorgánicos de Carbono , Teoría Funcional de la Densidad , Isoniazida , Simulación de Dinámica Molecular , Compuestos de Silicona , Isoniazida/química , Compuestos de Silicona/química , Compuestos Inorgánicos de Carbono/química , Compuestos de Boro/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Antituberculosos/química , Compuestos de Nitrógeno/química , Portadores de Fármacos/química , Compuestos de Aluminio
6.
Bioorg Chem ; 147: 107418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703441

RESUMEN

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Asunto(s)
Biocatálisis , Oxidación-Reducción , Procesos Fotoquímicos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Estructura Molecular , NAD/química , NAD/metabolismo , Biomimética , Niacinamida/química , Niacinamida/metabolismo , Compuestos de Nitrógeno/química , Grafito
7.
Environ Res ; 243: 117848, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065396

RESUMEN

The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3-11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.


Asunto(s)
Grafito , Nitrilos , Compuestos de Nitrógeno , Peróxidos , Grafito/química , Fenol , Fenoles
8.
Environ Res ; 252(Pt 3): 119043, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692422

RESUMEN

It is of great significance to establish an effective method for removing Cr(VI) from wastewater. Herein, Fe-doped g-C3N4 (namely Fe-g-C3N4-2) was synthesized and then employed as photocatalyst to conduct the test of Cr(VI) reduction. Notably, the embedding of Fe ion in g-C3N4 can offer the Fe2+/Fe3+ redox couples, so reducing the interfacial resistance of charge transfer and suppressing the recombination of photogenerated electrons and holes. The impurity energy levels will form in g-C3N4 after the introduction of Fe ion, thereby boosting the light absorption capacity of catalyst. Thus, Fe-g-C3N4-2 showed good performance in photocatalytic Cr(VI) reduction, and the reduction efficiency of Cr(VI) can reach 39.9% within 40 min. Different with many previous studies, current work unexpectedly found that the addition of p-benzoquinone (BQ) can promote the Cr(VI) reduction, and the reduction efficiency of Cr(VI) over Fe-g-C3N4-2 was as high as 93.2% in the presence of BQ (1.5 mM). Further analyses showed that BQ can be reduced to hydroquinone (HQ) by photogenerated electrons, and UV light can also directly induce BQ to generate HQ by using H2O as the hydrogen donor. The HQ with reducing ability can accelerate the Cr(VI) reduction. In short, current work shared some novel insights into photocatalytic Cr(VI) reduction in the presence of BQ. Future research should consider possible reactions between photogenerated electrons and BQ. For the UV-induced photocatalysis, the suitability of BQ as the scavenger of O2•‒ must be given carefully consideration.


Asunto(s)
Benzoquinonas , Cromo , Hierro , Oxidación-Reducción , Benzoquinonas/química , Cromo/química , Catálisis , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Procesos Fotoquímicos , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/efectos de la radiación , Grafito
9.
Environ Res ; 242: 117812, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042517

RESUMEN

Developing efficient and effective photocatalysts is essential for organic dyes and antibiotic degradation in wastewater. Ni-doped α-Fe2O3/g-C3N4 (NFGCN) photocatalysts were synthesised through a simple co-precipitation technique and used for the ciprofloxacin (CIP) and methylene blue (MB) degradation through photocatalysis. The XRD data indicated the crystallinity of the synthesised iron oxide and its composites with rhombohedral structures with the nature of high purity. The morphology of the NFGCN composite revealed the construction of Ni-doped α-Fe2O3 (NFO) nanoparticles onto the g-C3N4 (GCN) sheet surface along with the close interface that induced a Z-scheme heterojunction. The synthesised photocatalysts showed photocatalytic activity with good degradation efficiency of 82.1 % and 92.0 % for CIP and MB, respectively, within 120 min under solar light exposure. The improved photocatalytic degradation efficiency was attained owing to the synthesised composite's enhanced light absorption in the visible range. The narrow band gap energies and interaction between Ni-doped α-Fe2O3 and g-C3N4 displayed by these materials result in enhanced visible light absorption, effective charge carrier separation and transportation to the pollutants. CIP degradation pathways were investigated utilising the LC-MS analysis. NFGCN composites showed good recyclability (5 cycles), magnetic retrievability, and stability for degrading organic and emerging pollutants from wastewater through photocatalysis.


Asunto(s)
Contaminantes Ambientales , Compuestos Férricos , Grafito , Nanocompuestos , Compuestos de Nitrógeno , Ciprofloxacina/química , Aguas Residuales , Luz , Nanocompuestos/química
10.
Environ Res ; 249: 118358, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325777

RESUMEN

Increasing the electron-hole recombination rate in g-C3N4 can effectively improve its photocatalytic performance. In this work, NiCoP/g-C3N4 (NCP/PCN) composites with ohmic junction were formed by embedding granular NiCoP in irregularly porous g-C3N4. There was almost no barrier between the metal and the semiconductor in ohmic junction, which made it easier for electrons to slip from PCN to NCP along the curved energy band, and NCP acted as an electron collector to rapidly capture the slipping electrons. In addition, porous g-C3N4 prepared by supramolecular self-assembly could provide a shorter diffusion path for electrons. Thus, the electron-hole was effectively separated and the photocatalytic performance was improved. The band electronic structure and existence of ohmic junction in 7-NCP/PCN composite were demonstrated by XPS, ESR and DFT calculation. Finally, a reasonable photocatalytic degradation mechanism and possible tetracycline degradation path were proposed. This work has significant potential for providing an effective method for the design of non-precious metal photocatalysts.


Asunto(s)
Luz , Tetraciclina , Tetraciclina/química , Catálisis , Contaminantes Químicos del Agua/química , Compuestos de Nitrógeno/química , Procesos Fotoquímicos , Grafito/química
11.
Environ Res ; 244: 117964, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135102

RESUMEN

In this study, we evaluate the efficiency of two novel nanostructured adsorbents - chitosan-graphitic carbon nitride@magnetite (CS-g-CN@Fe3O4) and graphitic carbon nitride@copper/zinc nanocomposite (g-CN@Cu/Zn NC) - for the rapid removal of methylparaben (MPB) from water. Our characterization methods, aimed at understanding the adsorbents' structures and surface areas, informed our systematic examination of influential parameters including sonication time, adsorbent dosage, initial MPB concentration, and temperature. We applied advanced modeling techniques, such as response surface methodology (RSM), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN), to evaluate the adsorption process. The adsorbents proved highly effective, achieving maximum adsorption capacities of 255 mg g-1 for CS-g-CN@Fe3O4 and 218 mg g-1 for g-CN@Cu/Zn NC. Through genetic algorithm (GA) optimization, we identified the optimal conditions for the highest MPB removal efficiency: a sonication period of 12.00 min and an adsorbent dose of 0.010 g for CS-g-CN@Fe3O4 NC, with an MPB concentration of 17.20 mg L-1 at 42.85 °C; and a sonication time of 10.25 min and a 0.011 g dose for g-CN@Cu/Zn NC, with an MPB concentration of 13.45 mg L-1 at 36.50 °C. The predictive accuracy of the RBFNN and GRNN models was confirmed to be satisfactory. Our findings demonstrate the significant capabilities of these synthesized adsorbents in effectively removing MPB from water, paving the way for optimized applications in water purification.


Asunto(s)
Grafito , Compuestos de Nitrógeno , Parabenos , Contaminantes Químicos del Agua , Purificación del Agua , Cobre/química , Temperatura , Agua/química , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
12.
Environ Res ; 256: 119184, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782344

RESUMEN

The remarkable application of tin oxide in various domains is indebted to its photoelectronic merits. However, significant efforts to discover its photocatalytic potential were restricted through arduous challenges, which were the amelioration of light-harvesting and -utilizing. In fact, the uncommon light absorption energy has drawn veil over the brilliance of astounding oxidation potential, which is much more than that of TiO2. Herein, our attention was focused on the taking advantages of self-template structure for simultaneously enjoying the two sides of photoelectronic justification as well as the S-step system for eminent charge dissociation. In this regard, the optimized Cu-modified SnO2 yolk-shell ((5)YS-CuSnO) spheres were engineered through the copper modulation into glycerate-assisted metal-organic structure. As a result, the exceptional light-harvesting was achieved through desirable defects and oxygen vacancy resulted from Cu-doping, and also efficient light-utilization was obtained by the multi-scattering/reflection effect resulted from multi-shell configuration. After the effectual incorporation (40 wt⁒) of (5)YS-CuSnO was encapsulated into the V2O5-decorated wrinkled g-C3N4 lamella (VO-WCN), the dual S-step VO-WCN@(5)YS-CuSnO introduced unprecedented levofloxacin (LFC) decontamination performance, which was kinetically 5.2 and 30.2-times greater than of the (5)YS-CuSnO and bare SnO2 yolk-shell. The conspicuous fulfillment of nanocomposite was manifested in the LFC mineralization, pharmaceutical effluent treatment within 360 min, and successive cycling reactions. The fusion of the extraordinary architecture of YS-CuSnO with S-Step system not only initiates the facile and practical photocatalytic exploitation, but shade light on some undeveloped side of tin oxide.


Asunto(s)
Antibacterianos , Cobre , Fotólisis , Compuestos de Estaño , Compuestos de Estaño/química , Cobre/química , Antibacterianos/química , Compuestos de Nitrógeno/química , Grafito
13.
Environ Res ; 254: 119163, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759770

RESUMEN

The hydrothermal approach was used in the design and construction of the SnWO4 (SW) nanoplates anchored g-C3N4 (gCN) nanosheet heterostructures. Morphology, optical characteristics, and phase identification were investigated. The heterostructure architect construction and successful interface interaction were validated by the physicochemical characteristics. The test materials were used as a photocatalyst in the presence of visible light to break down the antibiotic tetracycline (TC) and the organic Rhodamine B (RhB). The best photocatalytic degradation efficiency of TC (97%) and RhB (98%) pollutants was demonstrated by the optimized 15 mg of gCNSW-7.5 in 72 and 48 min, respectively, at higher rate constants of 0.0409 and 0.0772 min-1. The interface contact between gCN and SW, which successfully enhanced charge transfer and restricted recombination rate in the photocatalyst, is responsible for the enhanced performance of the gCNSW heterostructure photocatalyst. In addition, the gCNSW heterostructure photocatalyst demonstrated exceptional stability and reusability over the course of four successive testing cycles, highlighting its durable and dependable function. Superoxide radicals and holes were shown to be key players in the degradation of contaminants through scavenger studies. The charge transfer mechanism in the heterostructure is identified as Z-scheme mode with the help of UV-vis DRS analysis. Attributed to its unique structural features, and effective separation of charge carriers, the Z-scheme gCNSW-7.5 heterostructure photocatalyst exhibits significant promise as an exceptionally efficient catalyst for the degradation of pollutants. This positions it as a prospective material with considerable potential across various environmental applications.


Asunto(s)
Luz , Rodaminas , Tetraciclina , Rodaminas/química , Tetraciclina/química , Catálisis , Contaminantes Químicos del Agua/química , Fotólisis , Compuestos de Nitrógeno/química , Procesos Fotoquímicos , Antibacterianos/química , Grafito
14.
Environ Res ; 252(Pt 2): 118886, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583659

RESUMEN

In photo-Fenton technology, the narrower pH range limits its practical application for antibiotic wastewater remediation. Therefore, in this study, a Z-scheme heterojunction photo-Fenton catalyst was constructed by Fe-doped graphite-phase carbon nitride in combination with bismuth molybdate for the degradation of typical antibiotics. Fe doping can shorten the band gap and increase visible-light absorption. Simultaneously, the constructed Z-scheme heterojunction provides a better charge transfer pathway for the photo-Fenton reaction. Within 30 min, Fe3CN/BMO-3 removed 95.54% of tetracycline hydrochloride (TC), and its remarkable performance was the higher Fe3+/Fe2+ conversion efficiency through the decomposition of H2O2. The Fe3CN/BMO-3 catalyst showed remarkable photo-Fenton degradation performance in a wide pH range (3.0-11.0), and it also had good stability in the treatment of TC wastewater. Furthermore, the order of action of the active species was h+ > ·O2- > 1O2 > ·OH, and the toxicity assessment suggested that Fe3CN/BMO-3 was effective in reducing the biotoxicity of TC. The catalyst proved to be an economically feasible and applicable material for antibiotic photo-Fenton degradation, and this study provides another perspective on the application of elemental doping and constructed heterojunction photo-Fenton technology for antibiotic water environmental remediation.


Asunto(s)
Antibacterianos , Bismuto , Peróxido de Hidrógeno , Hierro , Molibdeno , Contaminantes Químicos del Agua , Bismuto/química , Antibacterianos/química , Antibacterianos/toxicidad , Concentración de Iones de Hidrógeno , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Peróxido de Hidrógeno/química , Molibdeno/química , Catálisis , Grafito/química , Grafito/toxicidad , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/toxicidad , Nitrilos/química , Nitrilos/toxicidad , Aguas Residuales/química
15.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734291

RESUMEN

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Asunto(s)
Carcinógenos , Oro , Grafito , Nanopartículas del Metal , Contaminantes Químicos del Agua , Oro/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Grafito/química , Carcinógenos/análisis , Atrazina/análisis , Atrazina/química , Azufre/química , Azufre/análisis , Técnicas Electroquímicas/métodos , Hidrazinas/análisis , Hidrazinas/química , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis , Nitrilos/química , Nitrilos/análisis , Monitoreo del Ambiente/métodos
16.
Environ Res ; 256: 119202, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782343

RESUMEN

A rational design of heterojunctions with high-quality contacts is essential for efficiently separating photogenerated charge carries and boosting the solar-driven harvesting capability. Herein, we fabricated a novel heterojunction of SnO2 quantum dots-anchored CdS-CdCO3 with g-C3N4 nanosheets as a superior photocatalyst. SnO2 quantum dots (SQDs) with positively charged surfaces were tightly anchored on the negatively charged surface of CdS nanosheets (NSs). The resulting CdS@SnO2 was finally decorated with g-C3N4 NSs, and a new crystalline phase of CdS-CdCO3 was formed during the hydrothermal decoration process, g-C3N4 decorated CdS-CdCO3@SnO2 (CdS-CdCO3@SnO2@g-C3N4). The as-synthesized photocatalysts were evaluated for the degradation of methyl orange dye under solar light conditions. The CdS-CdCO3@SnO2@g-C3N4 exhibited 7.7-fold and 2.3-fold enhancements in photocatalytic activities in comparison to those of the bare CdS and CdS@SnO2 NSs, respectively. The optimal performance of CdS-CdCO3@SnO2@g-C3N4 is primarily attributed to the cascade-type conduction band alignments between 2D/0D/2D heterojunctions, which can harvest maximum solar light and effectively separate photoexcited charge carriers. This work provides a new inspiration for the rational design of 2D/0D/2D heterojunction photocatalyst for green energy generation and environmental remediation applications.


Asunto(s)
Compuestos de Cadmio , Nanocompuestos , Puntos Cuánticos , Compuestos de Estaño , Puntos Cuánticos/química , Compuestos de Cadmio/química , Compuestos de Estaño/química , Nanocompuestos/química , Catálisis , Sulfuros/química , Luz Solar , Procesos Fotoquímicos , Grafito/química , Compuestos Azo/química , Nitrilos/química , Compuestos de Nitrógeno/química
17.
Environ Res ; 251(Pt 1): 118566, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447606

RESUMEN

Both g-C3N4 and Bi2O2CO3 are good photocatalysts for the removal of antibiotic pollutants, but their morphological modulation and catalytic performance need to be further improved. In this study, the calcination-hydrothermal method is used to prepare a O-g-C3N4@Bi2O2CO3 (CN@BCO) composite photocatalyst from dicyandiamide and bismuth nitrate. The prepared catalyst is characterized through various methods, including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the effects of different parameters, such as catalyst concentration and initial pH of the reaction solution, on its photocatalytic activity are investigated. The results show that the CN@BCO sample achieves an optimal degradation rate of 98.1% for tetracycline hydrochloride (TCH) with a concentration of 20 mg/L and a removal rate of 69.4% for total organic carbon (TOC) at 40 min. The quenching experiments show that ·O2-, h+, and ·OH participate in the photocatalytic process, with ·O2- being the most dominant active species. The toxicity of the predicted TCH degradation intermediates is analyzed using Toxicity Estimation Software Tool (TEST). Overall, the CN@BCO composite exhibits excellent photocatalytic performance, making it a promising candidate for environmental purification and wastewater treatment.


Asunto(s)
Bismuto , Tetraciclina , Aguas Residuales , Contaminantes Químicos del Agua , Tetraciclina/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Bismuto/química , Catálisis , Antibacterianos/química , Nanocables/química , Compuestos de Nitrógeno/química , Nitrilos/química , Porosidad , Grafito
18.
Appl Microbiol Biotechnol ; 108(1): 105, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204134

RESUMEN

This review presents an analysis of formamide, focussing on its occurrence in nature, its functional roles, and its promising applications in the context of the bioeconomy. We discuss the utilization of formamide as an innovative nitrogen source achieved through metabolic engineering. These approaches underscore formamide's potential in supporting growth and production in biotechnological processes. Furthermore, our review illuminates formamide's role as a nitrogen source capable of safeguarding cultivation systems against contamination in non-sterile conditions. This attribute adds an extra layer of practicality to its application, rendering it an attractive candidate for sustainable and resilient industrial practices. Additionally, the article unveils the versatility of formamide as a potential carbon source that could be combined with formate or CO2 assimilation pathways. However, its attributes, i.e., enriched nitrogen content and comparatively limited energy content, led to conclude that formamide is more suitable as a co-substrate and that its use as a sole source of carbon for biomass and bio-production is limited. Through our exploration of formamide's properties and its applications, this review underscores the significance of formamide as valuable resource for a large spectrum of industrial applications. KEY POINTS: • Formidases enable access to formamide as source of nitrogen, carbon, and energy • The formamide/formamidase system supports non-sterile fermentation • The nitrogen source formamide supports production of nitrogenous compounds.


Asunto(s)
Formamidas , Nitrógeno , Compuestos de Nitrógeno , Carbono
19.
Luminescence ; 39(5): e4758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712530

RESUMEN

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Asunto(s)
Compuestos Férricos , Azul de Metileno , Compuestos de Nitrógeno , Energía Solar , Contaminantes Químicos del Agua , Zinc , Catálisis , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Azul de Metileno/química , Zinc/química , Magnesio/química , Fotólisis , Procesos Fotoquímicos , Colorantes/química , Nanocompuestos/química , Grafito/química , Aguas Residuales/química , Nitrilos/química
20.
Mikrochim Acta ; 191(7): 411, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900245

RESUMEN

Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.


Asunto(s)
Butirilcolinesterasa , Colorimetría , Nanoestructuras , Fenilendiaminas , Plata , Espectrometría de Fluorescencia , Humanos , Colorimetría/métodos , Plata/química , Fenilendiaminas/química , Butirilcolinesterasa/sangre , Butirilcolinesterasa/química , Espectrometría de Fluorescencia/métodos , Nanoestructuras/química , Compuestos de Nitrógeno/química , Límite de Detección , Nitrilos/química , Grafito , Fenazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA