Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.201
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 610(7932): 507-512, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261550

RESUMEN

Excessive agricultural nitrogen use causes environmental problems globally1, to an extent that it has been suggested that a safe planetary boundary has been exceeded2. Earlier estimates for the planetary nitrogen boundary3,4, however, did not account for the spatial variability in both ecosystems' sensitivity to nitrogen pollution and agricultural nitrogen losses. Here we use a spatially explicit model to establish regional boundaries for agricultural nitrogen surplus from thresholds for eutrophication of terrestrial and aquatic ecosystems and nitrate in groundwater. We estimate regional boundaries for agricultural nitrogen pollution and find both overuse and room for intensification of agricultural nitrogen. The aggregated global surplus boundary with respect to all thresholds is 43 megatonnes of nitrogen per year, which is 64 per cent lower than the current (2010) nitrogen surplus (119 megatonnes of nitrogen per year). Allowing the nitrogen surplus to increase to close yield gaps in regions where environmental thresholds are not exceeded lifts the planetary nitrogen boundary to 57 megatonnes of nitrogen per year. Feeding the world without trespassing regional and planetary nitrogen boundaries requires large increases in nitrogen use efficiencies accompanied by mitigation of non-agricultural nitrogen sources such as sewage water. This asks for coordinated action that recognizes the heterogeneity of agricultural systems, non-agricultural nitrogen losses and environmental vulnerabilities.


Asunto(s)
Agricultura , Ecosistema , Contaminación Ambiental , Agua Subterránea , Nitrógeno , Agricultura/legislación & jurisprudencia , Agricultura/métodos , Planeta Tierra , Contaminantes Ambientales/análisis , Contaminantes Ambientales/provisión & distribución , Contaminación Ambiental/análisis , Contaminación Ambiental/legislación & jurisprudencia , Contaminación Ambiental/prevención & control , Eutrofización , Agua Subterránea/química , Nitratos/análisis , Nitrógeno/análisis , Aguas del Alcantarillado/química , Agua/química , Abastecimiento de Alimentos
2.
Chem Rev ; 123(5): 2112-2154, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772093

RESUMEN

For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.


Asunto(s)
Eliminación de Residuos , Animales , Alimentos , Contaminación Ambiental/análisis , Nitrógeno , Tecnología
3.
PLoS Biol ; 19(3): e3001131, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784292

RESUMEN

A new collection of evidence-based commentaries explores critical challenges facing scientists and policymakers working to address the potential environmental and health harms of microplastics. The commentaries reveal a pressing need to develop robust methods to detect, evaluate, and mitigate the impacts of this emerging contaminant, most recently found in human placentas.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Plásticos/toxicidad , Restauración y Remediación Ambiental/métodos , Humanos , Microplásticos/toxicidad , Salud Pública
4.
PLoS Biol ; 19(3): e3000961, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784315

RESUMEN

The widespread use of plastic packaging for storing, transporting, and conveniently preparing or serving foodstuffs is significantly contributing to the global plastic pollution crisis. This has led to many efforts directed toward amending plastic packaging's end of life, such as recycling, or alternative material approaches, like increasingly using paper for food packaging. But these approaches often neglect the critical issue of chemical migration: When contacting foodstuffs, chemicals that are present in packaging transfer into food and thus unwittingly become part of the human diet. Hazardous chemicals, such as endocrine disrupters, carcinogens, or substances that bioaccumulate, are collectively referred to as "chemicals of concern." They can transfer from plastic packaging into food, together with other unknown or toxicologically uncharacterized chemicals. This chemical transfer is scientifically undisputed and makes plastic packaging a known, and avoidable, source of human exposure to synthetic, hazardous, and untested chemicals. Here, I discuss this issue and highlight aspects in need of improvement, namely the way that chemicals present in food packaging are assessed for toxicity. Further, I provide an outlook on how chemical contamination from food packaging could be addressed in the future. Robust innovations must attempt systemic change and tackle the issue of plastic pollution and chemical migration in a way that integrates all existing knowledge.


Asunto(s)
Embalaje de Alimentos/tendencias , Plásticos/toxicidad , Embalaje de Productos/tendencias , Carcinógenos/toxicidad , Contaminación Ambiental/análisis , Contaminación de Alimentos/prevención & control , Embalaje de Alimentos/métodos , Sustancias Peligrosas/toxicidad , Humanos , Embalaje de Productos/métodos
5.
Environ Sci Technol ; 58(1): 449-458, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38130002

RESUMEN

Nitrogen is an essential nutrient and a major limiting element for the ocean ecosystem. Since the preindustrial era, substantial amounts of nitrogen from terrestrial sources have entered the ocean via rivers, groundwater, and atmospheric deposition. China serves as a key hub in the global nitrogen cycle, but the pathways, sources, and potential mitigation strategies for land-ocean nitrogen transport are unclear. By combining the CHANS, WRF-Chem, and WNF models, we estimated that 8 million tonnes (Tg) of nitrogen was transferred into the ocean in 2017 in China, with atmospheric deposition contributing 1/3. About half variation of the offshore chlorophyll concentration was explained by atmospheric deposition. The Bohai Sea was the hot spot of nitrogen input, estimated at 214 kg N ha-1, while other areas were around 25-51 kg N ha-1. The largest contributors are agricultural systems (4 Tg, 55%), followed by domestic sewage (2 Tg, 21%). Abatement measures could reduce nitrogen export to the ocean by 43%, and mitigating ammonia and nitrogen oxide emissions accounts for 33% of this reduction, highlighting the importance of addressing air pollution in resolving ocean pollution. The cost-benefit analysis suggests the priority of nitrogen reduction in cropland and transport systems for the ocean environment.


Asunto(s)
Contaminación del Aire , Ecosistema , Nitrógeno/análisis , Ambiente , Contaminación Ambiental/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente
6.
Nature ; 564(7734): 99-103, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518888

RESUMEN

Through its important role in the formation of particulate matter, atmospheric ammonia affects air quality and has implications for human health and life expectancy1,2. Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems3-5 and to climate change6. Anthropogenic emissions dominate natural ones and mostly originate from agricultural, domestic and industrial activities7. However, the total ammonia budget and the attribution of emissions to specific sources remain highly uncertain across different spatial scales7-9. Here we identify, categorize and quantify the world's ammonia emission hotspots using a high-resolution map of atmospheric ammonia obtained from almost a decade of daily IASI satellite observations. We report 248 hotspots with diameters smaller than 50 kilometres, which we associate with either a single point source or a cluster of agricultural and industrial point sources-with the exception of one hotspot, which can be traced back to a natural source. The state-of-the-art EDGAR emission inventory10 mostly agrees with satellite-derived emission fluxes within a factor of three for larger regions. However, it does not adequately represent the majority of point sources that we identified and underestimates the emissions of two-thirds of them by at least one order of magnitude. Industrial emitters in particular are often found to be displaced or missing. Our results suggest that it is necessary to completely revisit the emission inventories of anthropogenic ammonia sources and to account for the rapid evolution of such sources over time. This will lead to better health and environmental impact assessments of atmospheric ammonia and the implementation of suitable nitrogen management strategies.


Asunto(s)
Agricultura/métodos , Amoníaco/análisis , Atmósfera/química , Contaminación Ambiental/análisis , Residuos Industriales/análisis , Imágenes Satelitales , Administración de Residuos
8.
Environ Res ; 248: 118226, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286253

RESUMEN

The synergistic enhancement of pollution reduction and carbon mitigation (PRCM) is an inevitable requirement for China's ecological civilization construction. Existing studies primarily focus on macro-level research, and there is a relative lack of research specifically addressing the micro-level of industrial chains. Based on non-competitive IO tables, this study employed the structural path decomposition analysis method to analyze the synergistic disparities of the PRCM industry chain and its driving factors. The findings reveal: (1) The crucial emission industrial chains for CO2, SO2, and PM show a high overlap degree, accounting for 46.67 %, 46.67 %, 60.00 %, 50.00 %, and 56.67 % during 2002-2020. The PRCM industrial chains are operating at a low synergistic level, with proportions of only 13.33 %, 23.33 %, 20.00 %, and 16.67 %. PRCM exhibits a "similar origin with different paths" phenomenon. (2) China's carbon mitigation policies can reduce pollution, whereas pollution reduction policies have limited carbon mitigation effects. (3) The emission control effect is the primary disparate factor in PRCM synergy, while other factors exhibit consistent impact direction to three emissions. The study's conclusions and corresponding policy suggestions hold significant theoretical and practical implications for relevant authorities to systematically plan synergistic emission reduction pathways and establish targeted synergistic policies.


Asunto(s)
Carbono , Contaminación Ambiental , Carbono/análisis , Contaminación Ambiental/análisis , Industrias , Dióxido de Carbono/análisis , China , Desarrollo Económico
9.
Environ Res ; 245: 118055, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154562

RESUMEN

Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 µm), and comprehensive human exposure risk assessments.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire Interior/análisis , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Res ; 252(Pt 3): 118971, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642636

RESUMEN

Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.


Asunto(s)
Cambio Climático , Ecosistema , Microplásticos , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Humanos , Contaminación Ambiental/análisis , Clima
11.
Environ Res ; 252(Pt 1): 118694, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521357

RESUMEN

The contribution of smelting of nonferrous metals to heavy metals in surface soil have become increasingly important over the past decade. In this study, the distribution of heavy metals around an abandoned mercury-bearing waste recovery enterprise were investigated. Soil (14) and plant (18) samples were collected in the surrounding area. The total concentration of heavy metals and methyl mercury content were measured by ICP-MS and HPLC-ICP-MS. The results show that the average contents of Cd, Cr, Pb, Hg and As in all soil samples are higher than the second-level values of Soil environmental quality-Risk control standard for soil contamination of development land (GB 36600-2018). Hg in the leaves ranged from 0.003 to 0.174 mg kg-1. Besides, the Pearson correlation analysis results indicate that Hg has a different environmental behavior compared to the other heavy metal under certain environmental or geographical conditions. But the mantel test statistical analysis results show that the Cr (P < 0.01), Cu, Pb, and Fe (P < 0.05) in the soil may have similar pollution sources with carbonate-bound mercury and iron-manganese oxide-bound mercury. The Hg concentrations show no correlation among plant leaves and soil, but significantly influenced by the distance and wind direction. These findings suggest that Hg in plant leaves may be derived from the deposition of atmospheric mercury from secondary mercury plant. The results will supplement those for relevant policy making for mercury-bearing waste recovery enterprises to improve urban environmental quality and human health.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , China , Metales Pesados/análisis , Mercurio/análisis , Suelo/química , Plantas/química , Contaminación Ambiental/análisis
12.
Environ Res ; 252(Pt 3): 118988, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663666

RESUMEN

China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , China , Contaminantes del Suelo/análisis , Plaguicidas/análisis , Medición de Riesgo , Humanos , Monitoreo del Ambiente , Agricultura , Contaminación Ambiental/análisis
13.
Environ Res ; 249: 118246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278509

RESUMEN

The Earth's history is documented in human civilizations, soil layers, river movement, and quiet sediments throughout millennia. This investigation explores the significant legacy of environmental toxins in these key planet components. Understanding how ancient activity shaped the terrain is crucial as mankind faces environmental issues. This interdisciplinary study uses environmental science, archaeology, and geology to uncover Earth's mysteries. It illuminates the dynamic processes that have built our globe by studying pollutants and soil, water, and sediments. This research follows human actions, both intentional and unintentional, from ancient civilizations through contemporary industrialization and their far-reaching effects. Environmental destiny examines how contaminants affect ecosystems and human health. This study of past contamination helps solve modern problems including pollution cleanup, sustainable land management, and water conservation. This review studies reminds us that our previous activities still affect the ecosystem in a society facing rapid urbanisation and industrialization. It emphasises the importance of environmental stewardship and provides a framework for making educated choices to reduce toxins in soil, water, and sediments. Discovery of Earth's secrets is not only a historical curiosity; it's a necessary step towards a sustainable and peaceful cohabitation with our home planet.


Asunto(s)
Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes del Suelo/análisis , Humanos , Planeta Tierra , Suelo/química , Monitoreo del Ambiente/historia , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental/historia , Contaminación Ambiental/análisis
14.
Environ Res ; 252(Pt 1): 118732, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518908

RESUMEN

Exploring whether informal environmental regulations (INER) can achieve carbon reduction in the context of pollution reduction and carbon reduction, as well as how to achieve carbon reduction, can help solve the dual failures of the market and government in environmental protection. Based on the polycentric governance theory and considering the characteristics of social subject environmental participation, the Stackelberg game is used to demonstrate the impact mechanism of INER on CO2. In addition, using the panel data of China's 30 provinces from 2003 to 2018, this paper validates the effectiveness of INER by Pooled Ordinary Least Square (POLS) and threshold panel model. Then, the mediating effect model is used to test the mechanism of INER's effect on carbon reduction. The results show that corruption is not conducive to CO2 reduction. The reduction effect of INER on CO2 exhibits heterogeneity with changes in other non-greenhouse gas pollutants. While INER effectively reduces local corruption, its more substantial indirect impact on CO2 reduction is prominent when levels of other pollutants are lower. Comparative analysis reveals that there are still biased governance behaviors to cope with INER's pressure in some regions nowadays. The findings show that for countries facing the dual task of pollution control and carbon reduction, the key to leveraging the supervisory role of INER should be focused on mitigating information asymmetry caused by the characteristics of CO2. Therefore, in the process of environmental protection, the public environmental participation system should be improved, and the process of disclosing polluters' carbon information should be accelerated.


Asunto(s)
Contaminación del Aire , Dióxido de Carbono , Política Ambiental , China , Dióxido de Carbono/análisis , Política Ambiental/legislación & jurisprudencia , Contaminación del Aire/prevención & control , Contaminación del Aire/legislación & jurisprudencia , Contaminación del Aire/análisis , Contaminación Ambiental/prevención & control , Contaminación Ambiental/legislación & jurisprudencia , Contaminación Ambiental/análisis , Contaminantes Atmosféricos/análisis
15.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34453007

RESUMEN

Recent research [Wang et al., Nature 581, 184-189 (2020)] indicates nitric acid (NA) can participate in sulfuric acid (SA)-ammonia (NH3) nucleation in the clean and cold upper free troposphere, whereas NA exhibits no obvious effects at the boundary layer with relatively high temperatures. Herein, considering that an SA-dimethylamine (DMA) nucleation mechanism was detected in megacities [Yao et al., Science 361, 278-281 (2018)], the roles of NA in SA-DMA nucleation are investigated. Different from SA-NH3 nucleation, we found that NA can enhance SA-DMA-based particle formation rates in the polluted atmospheric boundary layer, such as Beijing in winter, with the enhancement up to 80-fold. Moreover, we found that NA can promote the number concentrations of nucleation clusters (up to 27-fold) and contribute 76% of cluster formation pathways at 280 K. The enhancements on particle formation by NA are critical for particulate pollution in the polluted boundary layer with relatively high NA and DMA concentrations.


Asunto(s)
Amoníaco/química , Dimetilaminas/química , Contaminantes Ambientales/química , Contaminación Ambiental/análisis , Ácido Nítrico/química , Ácidos Sulfúricos/química , Atmósfera , Modelos Químicos , Termodinámica
16.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34155096

RESUMEN

Extreme air quality episodes represent a major threat to human health worldwide but are highly dynamic and exceedingly challenging to monitor. The 2018 Kilauea Lower East Rift Zone eruption (May to August 2018) blanketed much of Hawai'i Island in "vog" (volcanic smog), a mixture of primary volcanic sulfur dioxide (SO2) gas and secondary particulate matter (PM). This episode was captured by several monitoring platforms, including a low-cost sensor (LCS) network consisting of 30 nodes designed and deployed specifically to monitor PM and SO2 during the event. Downwind of the eruption, network stations measured peak hourly PM2.5 and SO2 concentrations that exceeded 75 µg m-3 and 1,200 parts per billion (ppb), respectively. The LCS network's high spatial density enabled highly granular estimates of human exposure to both pollutants during the eruption, which was not possible using preexisting air quality measurements. Because of overlaps in population distribution and plume dynamics, a much larger proportion of the island's population was exposed to elevated levels of fine PM than to SO2 Additionally, the spatially distributed network was able to resolve the volcanic plume's chemical evolution downwind of the eruption. Measurements find a mean SO2 conversion time of ∼36 h, demonstrating the ability of distributed LCS networks to observe reaction kinetics and quantify chemical transformations of air pollutants in a real-world setting. This work also highlights the utility of LCS networks for emergency response during extreme episodes to complement existing air quality monitoring approaches.


Asunto(s)
Contaminación del Aire/análisis , Costos y Análisis de Costo , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/instrumentación , Contaminación Ambiental/análisis , Erupciones Volcánicas , Material Particulado/análisis , Comunicaciones por Satélite , Dióxido de Azufre/análisis
17.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846251

RESUMEN

Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere's role in transporting microplastics to remote locations [S. Allen et al., Nat. Geosci. 12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Science 368, 1257-1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth's systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.


Asunto(s)
Atmósfera/química , Monitoreo del Ambiente/métodos , Microplásticos/efectos adversos , Atmósfera/análisis , Polvo , Contaminación Ambiental/análisis , Microplásticos/química , Material Particulado/análisis , Plásticos/análisis , Plásticos/química , Polímeros , Suelo
18.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33888583

RESUMEN

Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate-a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh. Our approach identifies kilns with 94.2% accuracy and 88.7% precision and extracts the precise GPS coordinates of every brick kiln across Bangladesh. Using these estimates, we show that at least 12% of the population of Bangladesh (>18 million people) live within 1 km of a kiln and that 77% and 9% of kilns are (illegally) within 1 km of schools and health facilities, respectively. Finally, we show how kilns contribute up to 20.4 µg/[Formula: see text] of [Formula: see text] (particulate matter of a diameter less than 2.5 µm) in Dhaka when the wind blows from an unfavorable direction. We document inaccuracies and potential bias with respect to local regulations in the government data. Our approach demonstrates how machine learning and Earth observation can be combined to better understand the extent and implications of regulatory compliance in informal industry.


Asunto(s)
Monitoreo del Ambiente/métodos , Adhesión a Directriz/tendencias , Procesamiento de Imagen Asistido por Computador/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Asia , Bangladesh , Monóxido de Carbono/análisis , Conservación de los Recursos Naturales/métodos , Aprendizaje Profundo , Contaminación Ambiental/análisis , Humanos , Industrias , Material Particulado/análisis , Imágenes Satelitales/métodos
19.
Ecotoxicol Environ Saf ; 273: 116117, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377780

RESUMEN

Field rapid determination of soil accessible Cr(Ⅵ) is of great significance for on-site assessment and decision-making about the health risks of contaminated sites. When the thickness of solutions with various concentrations of Cr(Ⅵ) is constant, there would be a quantitative relationship between the chromogenic difference of Cr(Ⅵ) solutions and the concentration of Cr(Ⅵ). The chromogenic difference could be described by Red (R), Green (G), Blue (B) values. Based on the chromogenic reaction between 1,5-diphenylcarbazide and Cr(Ⅵ), this study first established the calibration curve between the chromogenic difference and the concentration of Cr(Ⅵ) in standard solution with or without 0.01 M CaCl2, using an RGB color sensor. This is the subsequent determination basis of the method for rapidly assessing accessible Cr(Ⅵ) in the field (M-RGB). Then, the concentration of accessible Cr(Ⅵ) of contaminated soil with "hand-shaking + standing" field extraction method was compared with "end-over-end shaking" laboratory extraction method. Finally, the accessible Cr(Ⅵ) of contaminated soil extractants was determined via M-RGB integrating the field extraction method. Results indicated there was a highly significant linear relationship between colorimetric difference value (∆E) and Cr(Ⅵ) concentration in the range of 0.1-3 mg/L (R2 > 0.99, P < 0.01), based on the Euclidean formula for calculating ∆E. The "hand-shaking + standing" field extraction method was effective in obtaining accessible Cr(Ⅵ) extractants with or without 0.01 M CaCl2, with the high extraction efficiency within 100±1%. The concentrations of accessible Cr(Ⅵ) in various polluted soils determined by M-RGB were consistent with that determined by the ultraviolet-visible spectrophotometry, with the relative error within ±5%, and the relative standard deviation ≤ 20%. The spiked recovery experiments showed that the recovery of M-RGB was between 95% and 105%, which means M-RGB could realize the trace analysis for accessible Cr(Ⅵ) in the field.


Asunto(s)
Cromo , Suelo , Cloruro de Calcio , Cromo/análisis , Contaminación Ambiental/análisis
20.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503102

RESUMEN

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Suelo , Medición de Riesgo/métodos , China , Contaminantes del Suelo/análisis , Cadmio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA