RESUMEN
Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.
Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Ciclo Celular , Cromosomas Fúngicos/metabolismo , Replicación del ADN , Mitocondrias/metabolismo , Ribonucleósido Difosfato Reductasa/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismoRESUMEN
Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.
Asunto(s)
Proteínas de Ciclo Celular , Cromosomas Fúngicos , ADN de Hongos , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Hidrólisis , Complejos Multiproteicos , Imagen Individual de Molécula , CohesinasRESUMEN
Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Proper chromosome segregation depends on correct attachments between microtubules and kinetochores. Budding yeast have been thought to achieve these attachments with different kinetics than other eukaryotes. Now, deploying specialized data processing techniques to achieve super-resolution images, Marco et al. demonstrate that this tractable cell-cycle model system shares more similarities with plants and animals than previously thought.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , HumanosRESUMEN
Following DNA replication, eukaryotic cells must biorient all sister chromatids prior to cohesion cleavage at anaphase. In animal cells, sister chromatids gradually biorient during prometaphase, but current models of mitosis in S. cerevisiae assume that biorientation is established shortly after S phase. This assumption is based on the observation of a bilobed distribution of yeast kinetochores early in mitosis and suggests fundamental differences between yeast mitosis and mitosis in animal cells. By applying super-resolution imaging methods, we show that yeast and animal cells share the key property of gradual and stochastic chromosome biorientation. The characteristic bilobed distribution of yeast kinetochores, hitherto considered synonymous for biorientation, arises from kinetochores in mixed attachment states to microtubules, the length of which discriminates bioriented from syntelic attachments. Our results offer a revised view of mitotic progression in S. cerevisiae that augments the relevance of mechanistic information obtained in this powerful genetic system for mammalian mitosis.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Anafase , Aurora Quinasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Huso AcromáticoRESUMEN
Yeast telomeres comprise irregular TG1â3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Alineación de Secuencia , Complejo ShelterinaRESUMEN
Cohesin, a member of the SMC complex family, holds sister chromatids together but also shapes chromosomes by promoting the formation of long-range intra-chromatid loops, a process proposed to be mediated by DNA loop extrusion. Here we describe the roles of three cohesin partners, Pds5, Wpl1, and Eco1, in loop formation along either unreplicated or mitotic Saccharomyces cerevisiae chromosomes. Pds5 limits the size of DNA loops via two different pathways: the canonical Wpl1-mediated releasing activity and an Eco1-dependent mechanism. In the absence of Pds5, the main barrier to DNA loop expansion appears to be the centromere. Our data also show that Eco1 acetyl-transferase inhibits the translocase activity that powers loop formation and contributes to the positioning of loops through a mechanism that is distinguishable from its role in cohesion establishment. This study reveals that the mechanisms regulating cohesin-dependent chromatin loops are conserved among eukaryotes while promoting different functions.
Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Mitosis , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , CohesinasRESUMEN
Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , CohesinasRESUMEN
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Asunto(s)
Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcripción Genética/fisiología , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/metabolismoRESUMEN
Whereas proliferating cells enter M phase shortly after DNA replication, the first M phase of meiosis is preceded by an extended prophase in which homologous chromosomes undergo recombination. Exit from prophase I is controlled by the recombination checkpoint (RC), which, in yeast, represses the meiosis-specific transcription factor Ndt80 required for the expression of B-type cyclins and other M phase regulators. We show that an extended prophase I additionally requires the suppression of latent, mitotic cell-cycle controls by the anaphase-promoting complex (APC/C) and its meiosis-specific activator Ama1, which trigger the degradation of M phase regulators and Ndd1, a subunit of a mitotic transcription factor. ama1Δ mutants exit from prophase I prematurely and independently of the RC, which results in recombination defects and chromosome missegregation. Thus, control of prophase I by meiotic mechanisms depends on the suppression of the alternative, mitotic mechanisms by a meiosis-specific form of the APC/C.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Meiosis , Profase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Metafase , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Huso Acromático , Factores de Transcripción/metabolismoRESUMEN
Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Cromosomas Fúngicos/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , CohesinasRESUMEN
In Saccharomyces cerevisiae, dicentric chromosomes stemming from telomere fusions preferentially break at the fusion. This process restores a normal karyotype and protects chromosomes from the detrimental consequences of accidental fusions. Here, we address the molecular basis of this rescue pathway. We observe that tandem arrays tightly bound by the telomere factor Rap1 or a heterologous high-affinity DNA binding factor are sufficient to establish breakage hotspots, mimicking telomere fusions within dicentrics. We also show that condensins generate forces sufficient to rapidly refold dicentrics prior to breakage by cytokinesis and are essential to the preferential breakage at telomere fusions. Thus, the rescue of fused telomeres results from a condensin- and Rap1-driven chromosome folding that favors fusion entrapment where abscission takes place. Because a close spacing between the DNA-bound Rap1 molecules is essential to this process, Rap1 may act by stalling condensins.
Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Factores de Transcripción/genética , Adenosina Trifosfatasas/metabolismo , Puntos de Rotura del Cromosoma , Cromosomas Fúngicos/ultraestructura , Citocinesis/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Cariotipo , Modelos Genéticos , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismoRESUMEN
In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.
Asunto(s)
Cromatina , Replicación del ADN , Fase G1 , Complejo de Reconocimiento del Origen , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fase G1/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Fase S/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dominios Proteicos/genética , Sitios de Unión , Unión Proteica , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Nucleosomas/metabolismo , Nucleosomas/genéticaRESUMEN
The 14-3-3 family of proteins are conserved across eukaryotes and serve myriad important regulatory functions in the cell. Homo- and hetero-dimers of these proteins mainly recognize their ligands via conserved motifs to modulate the localization and functions of those effector ligands. In most of the genetic backgrounds of Saccharomyces cerevisiae, disruption of both 14-3-3 homologs (Bmh1 and Bmh2) are either lethal or cells survive with severe growth defects, including gross chromosomal missegregation and prolonged cell cycle arrest. To elucidate their contributions to chromosome segregation, in this work, we investigated their centromere- and kinetochore-related functions of Bmh1 and Bmh2. Analysis of appropriate deletion mutants shows that Bmh isoforms have cumulative and non-shared isoform-specific contributions in maintaining the proper integrity of the kinetochore ensemble. Consequently, Bmh mutant cells exhibited perturbations in kinetochore-microtubule (KT-MT) dynamics, characterized by kinetochore declustering, mis-localization of kinetochore proteins and Mad2-mediated transient G2/M arrest. These defects also caused an asynchronous chromosome congression in bmh mutants during metaphase. In summary, this report advances the knowledge on contributions of budding yeast 14-3-3 proteins in chromosome segregation by demonstrating their roles in kinetochore integrity and chromosome congression.
Asunto(s)
Proteínas 14-3-3 , Segregación Cromosómica , Cinetocoros , Mitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Microtúbulos/metabolismo , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/genéticaRESUMEN
Meiotic recombination between homologous chromosomes initiates via programmed DNA double-strand breaks (DSBs), generated by complexes comprising Spo11 transesterase plus accessory proteins. DSBs arise concomitantly with the development of axial chromosome structures, where the coalescence of axis sites produces linear arrays of chromatin loops. Recombining DNA sequences map to loops, but are ultimately tethered to the underlying axis. How and when such tethering occurs is currently unclear. Using ChIPchip in yeast, we show that Spo11-accessory proteins Rec114, Mer2, and Mei4 stably interact with chromosome axis sequences, upon phosphorylation of Mer2 by S phase Cdk. This axis tethering requires meiotic axis components (Red1/Hop1) and is modulated in a domain-specific fashion by cohesin. Loss of Rec114, Mer2, and Mei4 binding correlates with loss of DSBs. Our results strongly suggest that hotspot sequences become tethered to axis sites by the DSB machinery prior to DSB formation.
Asunto(s)
Endodesoxirribonucleasas/metabolismo , Meiosis , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Unión Proteica , Saccharomyces cerevisiae/metabolismoRESUMEN
In most species, homologous chromosomes must recombine in order to segregate accurately during meiosis1. Because small chromosomes would be at risk of missegregation if recombination were randomly distributed, the double-strand breaks (DSBs) that initiate recombination are not located arbitrarily2. How the nonrandomness of DSB distributions is controlled is not understood, although several pathways are known to regulate the timing, location and number of DSBs. Meiotic DSBs are generated by Spo11 and accessory DSB proteins, including Rec114 and Mer2, which assemble on chromosomes3-7 and are nearly universal in eukaryotes8-11. Here we demonstrate how Saccharomyces cerevisiae integrates multiple temporally distinct pathways to regulate the binding of Rec114 and Mer2 to chromosomes, thereby controlling the duration of a DSB-competent state. The engagement of homologous chromosomes with each other regulates the dissociation of Rec114 and Mer2 later in prophase I, whereas the timing of replication and the proximity to centromeres or telomeres influence the accumulation of Rec114 and Mer2 early in prophase I. Another early mechanism enhances the binding of Rec114 and Mer2 specifically on the shortest chromosomes, and is subject to selection pressure to maintain the hyperrecombinogenic properties of these chromosomes. Thus, the karyotype of an organism and its risk of meiotic missegregation influence the shape and evolution of its recombination landscape. Our results provide a cohesive view of a multifaceted and evolutionarily constrained system that allocates DSBs to all pairs of homologous chromosomes.
Asunto(s)
Cromosomas Fúngicos/genética , Recombinación Homóloga , Meiosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Centrómero/genética , Segregación Cromosómica , Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , Momento de Replicación del ADN , Meiosis/genética , Profase Meiótica I/genética , Recombinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Factores de TiempoRESUMEN
The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive. Here we show that condensin has a strong tendency to trap itself in its own reaction product during chromatin compaction and yet is capable of interacting with chromatin in a highly dynamic manner in vivo. To resolve this apparent paradox, we identified specific chromatin remodelers and AAA-class ATPases that act in a coordinated manner to release condensin from chromatin entrapment. The Cdc48 segregase is the central linchpin of this regulatory mechanism and promotes ubiquitin-dependent cycling of condensin on mitotic chromatin as well as effective chromosome condensation. Collectively, our results show that condensin inhibition by its own reaction product is relieved by forceful enzyme extraction from chromatin.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Morfogénesis , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteína que Contiene Valosina/genéticaRESUMEN
Eukaryotic genomes are spatially organized within the nucleus in a nonrandom manner. However, fungal genome arrangement and its function in development and adaptation remain largely unexplored. Here, we show that the high-order chromosome structure of Fusarium graminearum is sculpted by both H3K27me3 modification and ancient genome rearrangements. Active secondary metabolic gene clusters form a structure resembling chromatin jets. We demonstrate that these jet-like domains, which can propagate symmetrically for 54 kb, are prevalent in the genome and correlate with active gene transcription and histone acetylation. Deletion of GCN5, which encodes a core and functionally conserved histone acetyltransferase, blocks the formation of the domains. Insertion of an exogenous gene within the jet-like domain significantly augments its transcription. These findings uncover an interesting link between alterations in chromatin structure and the activation of fungal secondary metabolism, which could be a general mechanism for fungi to rapidly respond to environmental cues, and highlight the utility of leveraging three-dimensional genome organization in improving gene transcription in eukaryotes.
Asunto(s)
Cromatina , Cromosomas Fúngicos , Fusarium , Metabolismo Secundario , Acetilación , Cromatina/metabolismo , Cromatina/genética , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Histonas/metabolismo , Histonas/genética , Familia de Multigenes , Metabolismo Secundario/genética , Transcripción GenéticaRESUMEN
During homologous recombination, cells must coordinate repair, DNA damage checkpoint signaling, and movement of chromosomal loci to facilitate homology search. In Saccharomyces cerevisiae, increased movement of damaged loci (local mobility) and undamaged loci (global mobility) precedes homolog pairing in mitotic cells. How cells modulate chromosome mobility in response to DNA damage remains unclear. Here, we demonstrate that global chromosome mobility is regulated by the Rad51 recombinase and its mediator, Rad52. Surprisingly, rad51Δ rad52Δ cells display checkpoint-dependent constitutively increased mobility, indicating that a regulatory circuit exists between recombination and checkpoint machineries to govern chromosomal mobility. We found that the requirement for Rad51 in this circuit is distinct from its role in recombination and that interaction with Rad52 is necessary to alleviate inhibition imposed by mediator recruitment to ssDNA. Thus, interplay between recombination factors and the checkpoint restricts increased mobility until recombination proteins are assembled at damaged sites.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Daño del ADN , Recombinación Homóloga , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Mutación , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.