Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 628(8008): 648-656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538789

RESUMEN

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.


Asunto(s)
Envejecimiento , Núcleo Celular , Cromatina , Lóbulo Frontal , ARN , Análisis de la Célula Individual , Anciano , Femenino , Humanos , Masculino , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Núcleo Celular/genética , Senescencia Celular/genética , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Lóbulo Frontal/metabolismo , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , ARN/genética , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Análisis de la Célula Individual/métodos , Transcripción Genética
2.
Cell ; 141(5): 872-83, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20471072

RESUMEN

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Asunto(s)
Cromosomas Humanos X/metabolismo , Células Madre Embrionarias/metabolismo , Oxígeno/metabolismo , Inactivación del Cromosoma X , Animales , Diferenciación Celular , Femenino , Histonas/metabolismo , Humanos , Cariotipificación , Masculino , Ratones , Estrés Oxidativo , Células Madre Pluripotentes/metabolismo
3.
Chromosoma ; 130(2-3): 177-197, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33745031

RESUMEN

Silencing most gene expression from all but one X chromosome in female mammals provides a means to overcome X-linked gene expression imbalances with males. Central to establishing gene silencing on the inactivated X chromosome are the actions of the long non-coding RNA XIST that triggers the repackaging of the chosen X into facultative heterochromatin. While understanding the mechanisms through which XIST expression is regulated and mediates its affects has been a major focus of research since its discovery, less is known about the role XIST plays in maintaining chromatin at the human inactive X chromosome (Xi). Here, we use genome engineering to delete the promoter of XIST to knockout expression from the Xi in non-cancerous diploid human somatic cells. Although some heterochromatin features exhibit limited change at the Xi, two of those assessed showed significant reductions including histone H2A monoubiquitylation at lysine 119 and histone H3 trimethylation at lysine 27, both of which are covalent histone modifications catalyzed by the polycomb repressive complexes 1 and 2 respectively. Coupled with these reductions, we observed an occasional gain of euchromatin signatures on Xp, but despite these signs of chromatin instability, we did not observe appreciable changes in the reactivation of genes from the Xi. Collectively, these data are consistent with maintenance of dosage compensation at the Xi involving multiple redundant layers of gene silencing.


Asunto(s)
Heterocromatina , Regiones Promotoras Genéticas , ARN Largo no Codificante , Inactivación del Cromosoma X , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Silenciador del Gen , Heterocromatina/genética , Histonas/metabolismo , Humanos , Masculino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Exp Cell Res ; 398(2): 112419, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33296661

RESUMEN

Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5' untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.


Asunto(s)
Cromosomas Humanos X/genética , Síndrome del Cromosoma X Frágil/genética , Animales , Células Cultivadas , Cromosomas Humanos X/metabolismo , Cricetulus , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Humanos , Ratones , Repeticiones de Trinucleótidos/genética
5.
Nucleic Acids Res ; 48(5): 2372-2387, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31925439

RESUMEN

A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.


Asunto(s)
Cromosomas Humanos X/química , Epigénesis Genética , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Inactivación del Cromosoma X , Alelos , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Cromosomas Humanos X/metabolismo , Islas de CpG , Edición Génica , Silenciador del Gen , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
6.
Genome Res ; 28(1): 88-99, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29222086

RESUMEN

DNA methylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide analysis of DNA methylation remains technically challenging and costly. DNA methylation-dependent restriction enzymes can be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been hampered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for accurate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate genome-wide analysis of CpG methylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI digested fragments revealed highly reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-specific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also observed highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-throughput epigenetic profiling.


Asunto(s)
Cromosomas Humanos X , Islas de CpG , Metilación de ADN/fisiología , Desoxirribonucleasa I/química , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Inactivación del Cromosoma X , Cromosomas Humanos X/química , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Humanos
7.
J Cutan Pathol ; 48(2): 263-268, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32996614

RESUMEN

BACKGROUND AND AIMS: Synovial sarcoma (SS) is a spindled cell sarcoma demonstrating varying degrees of epithelial differentiation and characterized by a pathognomonic t(X;18) translocation. SS most frequently involves deep soft tissue of the extremities in young adults. Superficial SS involving dermis and/or subcutaneous tissue is exceedingly rare. METHODS AND RESULTS: We identified eight cases of primary superficial synovial sarcomas across three tertiary institutions. All cases were confined to the dermis/subcutis based on imaging or gross and microscopic examination. The average patient age was 36 years (range 14-50). The average tumor size was 2.4 cm (range 0.9-3.9 cm) and lesions showed classic monophasic (n = 4) or biphasic (n = 4) morphology. All tumors expressed keratin AE1/AE3 and/or epithelial membrane antigen (EMA), but were negative for CD34. The diagnosis for each case was confirmed by molecular detection of t(X;18). Six of the eight cases were treated with curative excision while the other two received additional radiotherapy. Follow-up was available for six patients (mean 68 months, range 2-108 months) and no patient experienced recurrence or metastatic disease. CONCLUSIONS: We present the largest series to date of primary superficial SS with molecular confirmation for all cases. SS should be considered when evaluating a cutaneous monomorphic spindle cell neoplasm.


Asunto(s)
Biomarcadores de Tumor , Cromosomas Humanos Par 18 , Cromosomas Humanos X , Proteínas de Neoplasias , Sarcoma Sinovial , Neoplasias Cutáneas , Translocación Genética , Adolescente , Adulto , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 18/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Sarcoma Sinovial/genética , Sarcoma Sinovial/metabolismo , Sarcoma Sinovial/patología , Sarcoma Sinovial/radioterapia , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/radioterapia
8.
Cell Mol Life Sci ; 77(15): 2949-2958, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32040694

RESUMEN

During embryonic development, one of the two X chromosomes of a mammalian female cell is randomly inactivated by the X chromosome inactivation mechanism, which is mainly dependent on the regulation of the non-coding RNA X-inactive specific transcript at the X chromosome inactivation center. There are three proteins that are essential for X-inactive specific transcript to function properly: scaffold attachment factor-A, lamin B receptor, and SMRT- and HDAC-associated repressor protein. In addition, the absence of X-inactive specific transcript expression promotes tumor development. During the process of chromosome inactivation, some tumor suppressor genes escape inactivation of the X chromosome and thereby continue to play a role in tumor suppression. A well-functioning tumor suppressor gene on the idle X chromosome in women is one of the reasons they have a lower propensity to develop cancer than men, women thereby benefit from this enhanced tumor suppression. This review will explore the mechanism of X chromosome inactivation, discuss the relationship between X chromosome inactivation and tumorigenesis, and consider the consequent sex differences in cancer.


Asunto(s)
Cromosomas Humanos X/metabolismo , Neoplasias/patología , Humanos , Mutación , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , Caracteres Sexuales , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Inactivación del Cromosoma X
9.
Nucleic Acids Res ; 47(8): 3875-3887, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30783652

RESUMEN

The XIST RNA is a non-coding RNA that induces X chromosome inactivation (XCI). Unlike the mouse Xist RNA, how the human XIST RNA controls XCI in female cells is less well characterized, and its functional motifs remain unclear. To systematically decipher the XCI-involving elements of XIST RNA, 11 smaller XIST segments, including repeats A, D and E; human-specific repeat elements; the promoter; and non-repetitive exons, as well as the entire XIST gene, were homozygously deleted in K562 cells using the Cas9 nuclease and paired guide RNAs at high efficiencies, followed by high-throughput RNA sequencing and RNA fluorescence in situ hybridization experiments. Clones containing en bloc and promoter deletions that consistently displayed no XIST RNAs and a global up-regulation of X-linked genes confirmed that the deletion of XIST reactivates the inactive X chromosome. Systematic analyses of segmental deletions delineated that exon 5 harboring the non-repeat element is important for X-inactivation maintenance, whereas exons 2, 3 and 4 as well as the other repeats in exon 1 are less important, a different situation from that of mouse Xist. This Cas9-assisted dissection of XIST allowed us to understand the unique functional domains within the human XIST RNA.


Asunto(s)
Secuencia de Bases , Cromosomas Humanos X/química , ARN Largo no Codificante/genética , Eliminación de Secuencia , Inactivación del Cromosoma X , Empalme Alternativo , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Cromosomas Humanos X/metabolismo , Células Clonales , Exones , Edición Génica/métodos , Genoma Humano , Humanos , Células K562 , Ratones , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Largo no Codificante/metabolismo , Especificidad de la Especie , Secuenciación Completa del Genoma
10.
Proc Natl Acad Sci U S A ; 115(28): 7398-7403, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946024

RESUMEN

A fundamental question in the biology of sex differences has eluded direct study in humans: How does sex-chromosome dosage (SCD) shape genome function? To address this, we developed a systematic map of SCD effects on gene function by analyzing genome-wide expression data in humans with diverse sex-chromosome aneuploidies (XO, XXX, XXY, XYY, and XXYY). For sex chromosomes, we demonstrate a pattern of obligate dosage sensitivity among evolutionarily preserved X-Y homologs and update prevailing theoretical models for SCD compensation by detecting X-linked genes that increase expression with decreasing X- and/or Y-chromosome dosage. We further show that SCD-sensitive sex-chromosome genes regulate specific coexpression networks of SCD-sensitive autosomal genes with critical cellular functions and a demonstrable potential to mediate previously documented SCD effects on disease. These gene coexpression results converge with analysis of transcription factor binding site enrichment and measures of gene expression in murine knockout models to spotlight the dosage-sensitive X-linked transcription factor ZFX as a key mediator of SCD effects on wider genome expression. Our findings characterize the effects of SCD broadly across the genome, with potential implications for human phenotypic variation.


Asunto(s)
Aneuploidia , Cromosomas Humanos X , Cromosomas Humanos Y , Dosificación de Gen , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel , Modelos Genéticos , Animales , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Cromosomas Humanos Y/genética , Cromosomas Humanos Y/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Noqueados
11.
Hum Mol Genet ; 27(R2): R242-R249, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29701779

RESUMEN

The X chromosome is unique in the genome. In this review we discuss recent advances in our understanding of the genetics and epigenetics of the X chromosome. The X chromosome shares limited conservation with its ancestral homologue the Y chromosome and the resulting difference in X-chromosome dosage between males and females is largely compensated for by X-chromosome inactivation. The process of inactivation is initiated by the long non-coding RNA X-inactive specific transcript (XIST) and achieved through interaction with multiple synergistic silencing pathways. Identification of Xist-interacting proteins has given insight into these processes yet the cascade of events from initiation to maintenance have still to be resolved. In particular, the initiation of inactivation in humans has been challenging to study as: it occurs very early in development; most human embryonic stem cell lines already have an inactive X; and the process seems to differ from mouse. Another difference between human and mouse X inactivation is the larger number of human genes that escape silencing. In humans over 20% of X-linked genes continue to be expressed from the otherwise inactive X chromosome. We are only beginning to understand how such escape occurs but there is growing recognition that escapees contribute to sexually dimorphic traits. The unique biology and epigenetics of the X chromosome have often led to its exclusion from disease studies, yet the X constitutes 5% of the genome and is an important contributor to disease, often in a sex-specific manner.


Asunto(s)
Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Inactivación del Cromosoma X/fisiología , Animales , Cromosomas Humanos X/fisiología , Femenino , Silenciador del Gen/fisiología , Genes Reguladores/genética , Genes Ligados a X/genética , Genes Ligados a X/fisiología , Humanos , Masculino , Ratones , ARN Largo no Codificante/genética , Cromosoma X/genética , Cromosoma X/metabolismo , Cromosoma X/fisiología , Inactivación del Cromosoma X/genética
12.
Nat Rev Genet ; 15(6): 367-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24733023

RESUMEN

Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.


Asunto(s)
Trastornos de los Cromosomas , Cromosomas Humanos X , Regulación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X , Caracteres Sexuales , Inactivación del Cromosoma X , Animales , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Masculino , Mosaicismo
13.
Nature ; 511(7508): 177-83, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25008523

RESUMEN

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Aberraciones Cromosómicas , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Variaciones en el Número de Copia de ADN , Metilación de ADN , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Técnicas de Transferencia Nuclear/normas , Células Madre Pluripotentes/citología , Transcriptoma
14.
Int J Mol Sci ; 21(9)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397685

RESUMEN

Men are more frequently diagnosed with kidney cancer than women, with a more aggressive histology, larger tumors, a higher grade and stage, and worse oncological outcomes. Smoking habits and sex steroid hormones seem to have a possible role in explaining these gender disparities. Moreover, the expression of genes involved in tumor growth and immune response in kidney cancer varies between men and women, having an impact on the gender-related response to oncological therapy, such as anti-angiogenic drugs and immunotherapy. Recent advances have been made in our understanding of the molecular and genetic mechanisms involved in kidney cancer, which could partially explain the gender differences, and they are summarized in this paper. However, other key mechanisms, which fully clarify the striking clinical gender-related differences observed in kidney cancer, are not completely understood at present. We reviewed and summarized the most relevant publications about the relationship between gender and kidney cancer. Efforts should be made to progress in bench and clinical research on gender-related signatures and disparities, and their impact on the clinical management of kidney cancer.


Asunto(s)
Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/metabolismo , Cromosomas Humanos X/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Neoplasias Renales/epidemiología , Neoplasias Renales/metabolismo , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/terapia , Cromosomas Humanos X/genética , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Pronóstico , Factores de Riesgo , Factores Sexuales
15.
J Hum Genet ; 64(7): 665-671, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31004103

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder caused by abnormalities in the gene PLP1. Most females harboring heterozygous PLP1 abnormalities are basically asymptomatic. However, as a result of abnormal patterns of X-chromosome inactivation, it is possible for some female carriers to be symptomatic. Whole-exome sequencing of a female patient with unknown spastic paraplegia was performed to obtain a molecular diagnosis. As a result, a de novo heterozygous single-nucleotide deletion in PLP1 [NM_000533.5(PLP1_v001):c.783del; p.Thr262Leufs*20] was identified. RNA sequencing was performed in a patient-derived lymphoblastoid cell line, confirming mono-allelic expression of the mutated allele and abnormal inactivation of the wild-type allele. The patient-derived lymphoblastoid cell line was then treated with VX680 or 5azadC, which resulted in restored expression of the wild-type allele. These two agents thus have the potential to reverse inappropriately-skewed inactivation of the X-chromosome.


Asunto(s)
Mutación del Sistema de Lectura , Proteína Proteolipídica de la Mielina/genética , Paraplejía/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Alelos , Línea Celular , Niño , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Decitabina/farmacología , Femenino , Humanos , Enfermedad de Pelizaeus-Merzbacher/patología , Enfermedad de Pelizaeus-Merzbacher/terapia , Piperazinas/farmacología , Secuenciación del Exoma
16.
Methods ; 142: 30-38, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408376

RESUMEN

The spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues.


Asunto(s)
Mapeo Cromosómico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Hibridación Fluorescente in Situ/métodos , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mapeo Cromosómico/instrumentación , Cromosomas Humanos Par 18/genética , Cromosomas Humanos Par 18/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Cromosomas Humanos Y/genética , Cromosomas Humanos Y/metabolismo , Femenino , Fibroblastos , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Hibridación Fluorescente in Situ/instrumentación , Masculino , Cultivo Primario de Células/métodos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Piel/citología , Coloración y Etiquetado/instrumentación , Coloración y Etiquetado/métodos
17.
Blood ; 128(15): 1913-1917, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27488349

RESUMEN

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited blood disorders characterized by pathological mitochondrial iron deposition in erythroid precursors. Each known cause has been attributed to a mutation in a protein associated with heme biosynthesis, iron-sulfur cluster biogenesis, mitochondrial translation, or a component of the mitochondrial respiratory chain. Here, we describe a recurring mutation, c.276_278del, p.F93del, in NDUFB11, a mitochondrial respiratory complex I-associated protein encoded on the X chromosome, in 5 males with a variably syndromic, normocytic CSA. The p.F93del mutation results in respiratory insufficiency and loss of complex I stability and activity in patient-derived fibroblasts. Targeted introduction of this allele into K562 erythroleukemia cells results in a proliferation defect with minimal effect on erythroid differentiation potential, suggesting the mechanism of anemia in this disorder.


Asunto(s)
Anemia Sideroblástica/genética , Secuencia de Bases , Cromosomas Humanos X/genética , Complejo I de Transporte de Electrón/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Eliminación de Secuencia , Adolescente , Adulto , Anciano , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Niño , Preescolar , Cromosomas Humanos X/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Células K562 , Masculino , Persona de Mediana Edad
18.
Chromosoma ; 125(3): 361-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26174338

RESUMEN

The regions of the genome that interact frequently with the nucleolus have been termed nucleolar-associated domains (NADs). Deep sequencing and DNA-fluorescence in situ hybridization (FISH) experiments have revealed that these domains are enriched for repetitive elements, regions of the inactive X chromosome (Xi), and several RNA polymerase III-transcribed genes. NADs are often marked by chromatin modifications characteristic of heterochromatin, including H3K27me3, H3K9me3, and H4K20me3, and artificial targeting of genes to this area is correlated with reduced expression. It has therefore been hypothesized that NAD localization to the nucleolar periphery contributes to the establishment and/or maintenance of heterochromatic silencing. Recently published studies from several multicellular eukaryotes have begun to reveal the trans-acting factors involved in NAD localization, including the insulator protein CCCTC-binding factor (CTCF), chromatin assembly factor (CAF)-1 subunit p150, several nucleolar proteins, and two long non-coding RNAs (lncRNAs). The mechanisms by which these factors coordinate with one another in regulating NAD localization and/or silencing are still unknown. This review will summarize recently published studies, discuss where additional research is required, and speculate about the mechanistic and functional implications of genome organization around the nucleolus.


Asunto(s)
Nucléolo Celular/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Cromosomas Humanos X/metabolismo , Genoma Humano/fisiología , Heterocromatina/metabolismo , Inactivación del Cromosoma X/fisiología , Animales , Nucléolo Celular/genética , Cromosomas Humanos X/genética , Heterocromatina/genética , Humanos
19.
Hum Mol Genet ; 24(16): 4599-614, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26002102

RESUMEN

X chromosome-linked intellectual disability is a common developmental disorder, and mutations of the polyglutamine-binding protein 1 (PQBP1) gene have been linked to this disease. In addition to existing in the nucleus as a splicing factor, PQBP1 is also found in cytoplasmic RNA granules, where it associates with RNA-binding proteins. However, the roles of cytoplasmic PQBP1 are largely unknown. Here, we show that the Drosophila homolog of PQBP1 (dPQBP1) is present in the cytoplasm of photoreceptor cells, and its loss results in defective rhabdomere morphogenesis, which is due to impaired Chaoptin translation. We also show that dPQBP1 regulates mRNA translation by interacting with dFMR1, which binds to specific mRNAs and facilitates their assembly into translating ribosomes, a function that is conserved for human PQBP1 and FMRP. Our findings reveal the conserved function of PQBP1 in mRNA translation and provide molecular insights into the pathogenic mechanisms underlying Renpenning syndrome.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Proteínas de Unión al ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Glicoproteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/genética
20.
Genome Res ; 24(1): 64-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24065775

RESUMEN

In eukaryotic cells, genomic DNA replicates in a defined temporal order. The inactive X chromosome (Xi), the most extensive instance of facultative heterochromatin in mammals, replicates later than the active X chromosome (Xa), but the replication dynamics of inactive chromatin are not known. By profiling human DNA replication in an allele-specific, chromosomally phased manner, we determined for the first time the replication timing along the active and inactive chromosomes (Xa and Xi) separately. Replication of the Xi was different from that of the Xa, varied among individuals, and resembled a random, unstructured process. The Xi replicated rapidly and at a time largely separable from that of the euchromatic genome. Late-replicating, transcriptionally inactive regions on the autosomes also replicated in an unstructured manner, similar to the Xi. We conclude that DNA replication follows two strategies: slow, ordered replication associated with transcriptional activity, and rapid, random replication of silent chromatin. The two strategies coexist in the same cell, yet are segregated in space and time.


Asunto(s)
Cromosomas Humanos X/metabolismo , Replicación del ADN , Inactivación del Cromosoma X , Alelos , Línea Celular , Cromosomas Humanos X/genética , Epigénesis Genética , Femenino , Genoma Humano , Heterocromatina , Humanos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA