Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 24(15): e2300285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38171828

RESUMEN

Neuropeptides have tremendous potential for application in modern medicine, including utility as biomarkers and therapeutics. To overcome the inherent challenges associated with neuropeptide identification and characterization, data-independent acquisition (DIA) is a fitting mass spectrometry (MS) method of choice to achieve sensitive and accurate analysis. It is advantageous for preliminary neuropeptidomic studies to occur in less complex organisms, with crustacean models serving as a popular choice due to their relatively simple nervous system. With spectral libraries serving as a means to interpret DIA-MS output spectra, and Cancer borealis as a model of choice for neuropeptide analysis, we performed the first spectral library mapping of crustacean neuropeptides. Leveraging pre-existing data-dependent acquisition (DDA) spectra, a spectral library was built using PEAKS Online. The library is comprised of 333 unique neuropeptides. The identification results obtained through the use of this spectral library were compared with those achieved through library-free analysis of crustacean brain, pericardial organs (PO), and thoracic ganglia (TG) tissues. A statistically significant increase (Student's t-test, P value < 0.05) in the number of identifications achieved from the TG data was observed in the spectral library results. Furthermore, in each of the tissues, a distinctly different set of identifications was found in the library search compared to the library-free search. This work highlights the necessity for the use of spectral libraries in neuropeptide analysis, illustrating the advantage of spectral libraries for interpreting DIA spectra in a reproducible manner with greater neuropeptidomic depth.


Asunto(s)
Espectrometría de Masas , Neuropéptidos , Animales , Neuropéptidos/análisis , Espectrometría de Masas/métodos , Braquiuros/química , Braquiuros/metabolismo , Biblioteca de Péptidos , Proteómica/métodos , Crustáceos/química , Bases de Datos de Proteínas
2.
Compr Rev Food Sci Food Saf ; 23(5): e70008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223761

RESUMEN

Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.


Asunto(s)
Exoesqueleto , Quitina , Quitosano , Quitina/química , Quitosano/química , Animales , Exoesqueleto/química , Residuos/análisis , Penaeidae/química , Crustáceos/química
3.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838805

RESUMEN

This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.


Asunto(s)
Quitosano , Cosméticos , Animales , Quitosano/química , Quitina/química , Polisacáridos/química , Crustáceos/química , Materiales Biocompatibles/química
4.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050017

RESUMEN

Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.


Asunto(s)
Quitina , Quitosano , Subtilisinas , Tenebrio , Animales , Acetilación , Rastreo Diferencial de Calorimetría , Quitina/química , Quitina/aislamiento & purificación , Quitina/metabolismo , Quitosano/química , Quitosano/aislamiento & purificación , Quitosano/metabolismo , Crustáceos/química , Insectos Comestibles/química , Insectos Comestibles/metabolismo , Hidrólisis , Proteolisis , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Subtilisinas/metabolismo , Tenebrio/química , Tenebrio/metabolismo , Termodinámica
5.
Nat Prod Rep ; 39(1): 33-57, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34190283

RESUMEN

Up to the end of 2020Every year, the appearance of marine biotoxins causes enormous socio-economic damage worldwide. Among the major groups of biotoxins, paralytic shellfish toxins, comprising saxitoxin and its analogues (STXs), are the ones that cause the most severe effects on humans, including death. However, the knowledge that currently exists on their chemistry, properties and mode of toxicological action is disperse and partially outdated. This review intends to systematically compile the dispersed information, updating and complementing it. With this purpose, it addresses several aspects related to the molecular structure of these toxins. Special focus is given to the bioconversion reactions that may occur in the different organisms (dinoflagellates, bivalves, and humans) and the possible mediators involved. A critical review of the most recently discovered analogues, the M-series toxins, is presented. Finally, a deep discussion about the relationship between the molecular structure (e.g., effect of the substituting groups and the net charge of the molecules) and the toxic activity of these molecules is performed, proposing the concept of "toxicological traffic light" based on the toxicity equivalency factors (TEFs).


Asunto(s)
Crustáceos/química , Toxinas Marinas/química , Moluscos/química , Animales , Humanos , Toxinas Marinas/farmacología , Venenos de Moluscos/química , Venenos de Moluscos/farmacología , Relación Estructura-Actividad
6.
Mar Drugs ; 20(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36354998

RESUMEN

There are two viable options to produce shrimp shells as by-product waste, either within the shrimp production phases or when the shrimp are peeled before cooking by the end user. This waste is considered a double-edged sword, as it is possible to be either a source of environmental pollution, through dumping and burning, or a promising source from which to produce chitosan as a biodegradable, biocompatible biopolymer which has a variety of agricultural, industrial, and biomedical applications. Chitosan is a deacetylated form of chitin that can be chemically recovered from shrimp shells through the three sequential stages of demineralization, deproteinization, and deacetylation. The main aim of this review paper is to summarize the recent literature on the chemical extraction of chitosan from shrimp shells and to represent the physicochemical properties of chitosan extracted from shrimp shells in different articles, such as chitosan yield, moisture content, solubility, ash content, and degree of deacetylation. Another aim is to analyze the influence of the main predictors of the chemical extraction stages (demineralization, deproteinization, and deacetylation) on the chitosan yield percentage by using a multilayer perceptron artificial neural network. This study showed that the deacetylation alkali concentration is the most crucial parameter, followed by the concentrations of acid and alkali of demineralization and deproteinization, respectively. The current review was conducted to be used in prospective studies for optimizing the chemical extraction of chitosan from shrimp wastes.


Asunto(s)
Quitosano , Animales , Quitosano/química , Estudios Prospectivos , Quitina/química , Crustáceos/química , Álcalis , Redes Neurales de la Computación
7.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555766

RESUMEN

Chitin and chitosan demand is growing very fast due to interest from industries such as pharmaceutical, cosmetic, agricultural and others. New sources for chitin and chitosan isolation are being extensively searched to fulfil this demand. In this paper, Saduria entomon a Baltic benthic crustacean, is evaluated as a source for chitin and chitosan isolation. Chitin and chitosan yield from S. entomon were 14.8 and 8.2%, respectively, in a similar range to other sources. Samples were characterized in terms of physicochemical properties (acetylation degree, molecular weight, thermal stability, and crystallinity) and two biological properties, antimicrobial activity and antioxidant activity were evaluated. Chitosan S. entomon exhibited antimicrobial activity against S. aureus but not against E. coli. An antioxidant activity of 20.98 TROLOX µmol equivalent/g polymer was detected for the chitosan sample. These properties are very promising for the use of this organism as a source for chitin and chitosan isolation in the biomedical field.


Asunto(s)
Antiinfecciosos , Quitosano , Isópodos , Animales , Quitosano/química , Quitina/química , Antioxidantes/farmacología , Escherichia coli , Staphylococcus aureus , Crustáceos/química , Antiinfecciosos/farmacología
8.
J Struct Biol ; 213(4): 107810, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774752

RESUMEN

Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.


Asunto(s)
Estructuras Animales/metabolismo , Biomineralización/fisiología , Crustáceos/metabolismo , Minerales/metabolismo , Estructuras Animales/química , Estructuras Animales/ultraestructura , Animales , Carbonato de Calcio/metabolismo , Fosfatos de Calcio/metabolismo , Crustáceos/química , Crustáceos/ultraestructura , Decápodos/química , Decápodos/metabolismo , Decápodos/ultraestructura , Microanálisis por Sonda Electrónica/métodos , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Conducta Predatoria/fisiología , Espectrometría por Rayos X/métodos , Espectrometría Raman/métodos
9.
J Nat Prod ; 84(12): 3122-3130, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34846891

RESUMEN

A new cytochalasin dimer, verruculoid A (1), three new cytochalasin derivatives, including 12-nor-cytochalasin F (2), 22-methoxycytochalasin B6 (3), and 19-hydroxycytochalasin B (4), and 20-deoxycytochalasin B (5), a synthetic product obtained as a natural product for the first time, together with four known analogues (6-9), were isolated and identified from the culture extract of Curvularia verruculosa CS-129, an endozoic fungus obtained from the inner fresh tissue of the deep-sea squat lobster Shinkaia crosnieri, which was collected from the cold seep area of the South China Sea. Structurally, verruculoid A (1) represents the first cytochalasin homodimer containing a thioether bridge, while 12-nor-cytochalasin F (2) is the first 12-nor-cytochalasin derivative. Their structures were elucidated by detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis and ECD calculations confirmed their structures and absolute configurations. Compound 1 displayed activity against the human pathogenic bacterium Escherichia coli (MIC = 2 µg/mL), while compounds 4, 8, and 9 showed cytotoxicity against three tumor cell lines (HCT-116, HepG-2, and MCF-7) with IC50 values from 5.2 to 12 µM. The structure-activity relationship was briefly discussed.


Asunto(s)
Frío , Crustáceos/química , Curvularia/aislamiento & purificación , Citocalasinas/farmacología , Ecosistema , Animales , Citocalasinas/química , Citocalasinas/aislamiento & purificación
10.
Subcell Biochem ; 94: 35-62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189295

RESUMEN

Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/ß-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.


Asunto(s)
Crustáceos , Hemolinfa , Lipoproteínas , Animales , Crustáceos/química , Crustáceos/inmunología , Crustáceos/metabolismo , Hemolinfa/química , Hemolinfa/inmunología , Hemolinfa/metabolismo , Lipoproteínas/biosíntesis , Lipoproteínas/química , Lipoproteínas/inmunología , Lipoproteínas/metabolismo
11.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946682

RESUMEN

Chitin, the second most abundant biopolymer on earth, is utilised in a wide range of applications including wastewater treatment, drug delivery, wound healing, tissue engineering, and stem cell technology among others. This review compares the most prevalent strategies for the extraction of chitin from crustacean sources including chemical methods that involve the use of harsh solvents and emerging methods using deep eutectic solvents (DES). In recent years, a significant amount of research has been carried out to identify and develop environmentally friendly processes which might facilitate the replacement of problematic chemicals utilised in conventional chemical extraction strategies with DES. This article provides an overview of different experimental parameters used in the DES-mediated extraction of chitin while also comparing the purity and yields of associated extracts with conventional methods. As part of this review, we compare the relative proportions of chitin and extraneous materials in different marine crustaceans. We show the importance of the species of crustacean shell in relation to chitin purity and discuss the significance of varying process parameters associated with different extraction strategies. The review also describes some recent applications associated with chitin. Following on from this review, we suggest recommendations for further investigation into chitin extraction, especially for experimental research pertaining to the enhancement of the "environmentally friendly" nature of the process. It is hoped that this article will provide researchers with a platform to better understand the benefits and limitations of DES-mediated extractions thereby further promoting knowledge in this area.


Asunto(s)
Exoesqueleto/química , Quitina , Crustáceos/química , Disolventes Eutécticos Profundos/química , Animales , Quitina/química , Quitina/aislamiento & purificación
12.
Molecules ; 26(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946706

RESUMEN

Lysozyme is a key effector molecule of the innate immune system in both vertebrate and invertebrate. It is classified into six types, one of which is the goose-type (g-type). To date, no study on g-type lysozyme in crustacean has been documented. Here, we report the identification and characterization of a g-type lysozyme (named LysG1) from the shrimp inhabiting a deep-sea hydrothermal vent in Manus Basin. LysG1 possesses conserved structural features of g-type lysozymes. The recombinant LysG1 (rLysG1) exhibited no muramidase activity and killed selectively Gram-negative bacteria in a manner that depended on temperature, pH, and metal ions. rLysG1 bound target bacteria via interaction with bacterial cell wall components, notably lipopolysaccharide (LPS), and induced cellular membrane permeabilization, which eventually caused cell lysis. The endotoxin-binding capacity enabled rLysG1 to alleviate the inflammatory response induced by LPS. Mutation analysis showed that the bacterial binding and killing activities of rLysG1 required the integrity of the conserved α3 and 4 helixes of the protein. Together, these results provide the first insight into the activity and working mechanism of g-type lysozyme in crustacean and deep-sea organisms.


Asunto(s)
Proteínas de Artrópodos , Crustáceos/química , Bacterias Gramnegativas/crecimiento & desarrollo , Respiraderos Hidrotermales , Muramidasa , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/farmacología , Muramidasa/química , Muramidasa/farmacología
13.
J Sci Food Agric ; 101(12): 5278-5285, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33646570

RESUMEN

BACKGROUND: Allergic reactions to crustacean products have been increasing owing to the rising consumption. Tropomyosin (TM) is the main crustacean allergen; it has a coiled-coil structure, which shows stability to various food processing methods. Crustacean processed products have been used in several food products, thereby causing greater difficulties in detecting TM in these products. We aimed to develop an assay based on high-performance liquid chromatography-tandem mass spectrometry for the accurate and reproducible quantification of crustacean TM in foods. RESULTS: The three peptides IQLLEEDLER, LAEASQAADESER, and IVELEEELR were selected as peptide markers, and the peptide IVELEEELR was selected as the quantitative marker. Extraction conditions and enzymatic digestion conditions were completely optimized. The extraction solution of Tris-hydrochloric acid buffer (50 mmol L-1 , pH 7.4) containing 1 mol L-1 potassium chloride and the enzymatic treatment at 1:15 ratio (enzyme/protein, m/m) for 13 h showed excellent efficiency. The method exhibited a good linear relationship, with the qualified coefficient of determination (R2  = 0.9994) in the wide range of 1 to 1000 µg L-1 . The accuracy was validated based on spiked recovery at three spiking levels (12.5, 25.0, and 50.0 µg kg-1 , TM/matrix) in blank matrices that included chicken sausages, beef balls, and egg-milk biscuits. The recoveries ranged from 91% to 109% with qualified relative standard deviations <15% with the limit of quantification (of 1.6 mg kg-1 , TM/matrix). CONCLUSION: This new approach can be used for the qualitative and quantitative detection of crustacean TM in various food matrices. © 2021 Society of Chemical Industry.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Crustáceos/química , Espectrometría de Masas en Tándem/métodos , Tropomiosina/química , Secuencia de Aminoácidos , Animales , Contaminación de Alimentos/análisis , Péptidos/química , Mariscos/análisis
14.
Biochem Biophys Res Commun ; 529(3): 678-684, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32736692

RESUMEN

In Cypridina (Vargula) hilgendorfii, Cypridina luciferin is converted from Cypridina luciferyl sulfate by a sulfotransferase with adenosine 3', 5'-diphosphate (PAP), and is used for the luminescence reaction of Cypridina luciferase. We found that the luminescence activity of crude extracts of C. hilgendorfii was significantly stimulated by the addition of acetic acid. This stimulation may be explained by an efficient supply of PAP from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) catalyzed by a sulfotransferase. Thus, acetic acid acts as a sulfate acceptor from PAPS, followed by forming acetyl sulfate and PAP. The structure of acetyl sulfate was identified using mass spectrometry and it spontaneously decomposed to acetic acid and free sulfate ion in aqueous solutions. This enzymatic conversion from Cypridina luciferyl sulfate to Cypridina luciferin could be coupled with acetic acid and PAPS by a sulfotransferase.


Asunto(s)
Crustáceos/enzimología , Imidazoles/química , Luciferasas/química , Sustancias Luminiscentes/química , Pirazinas/química , Sulfatos/química , Ácido Acético/química , Animales , Crustáceos/química , Luminiscencia , Mediciones Luminiscentes , Sulfotransferasas/química
15.
Biomacromolecules ; 21(1): 30-55, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31592650

RESUMEN

Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many ß-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.


Asunto(s)
Quitina/química , Hongos/química , Nanoestructuras/química , Exoesqueleto/química , Animales , Vendajes , Celulosa/química , Quitina/aislamiento & purificación , Crustáceos/química , Embalaje de Alimentos , Hongos/citología , Humanos , Polímeros/química
16.
Faraday Discuss ; 223(0): 278-294, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32748932

RESUMEN

Reflective assemblies of high refractive index organic crystals are used to produce striking optical phenomena in organisms based on light reflection and scattering. In aquatic animals, organic crystal-based reflectors are used both for image-formation and to increase photon capture. Here we report the characterization of a poorly-documented reflector in the eye of the shrimp L. vannamei lying 150 µm below the retina, which we term the proximal reflective layer (PR-layer). The PR-layer is made from a dense but disordered array of polycrystalline isoxanthopterin nanoparticles, similar to those recently reported in the tapetum of the same animal. Each spherical nanoparticle is composed of numerous isoxanthopterin single crystal plates arranged in concentric lamellae around an aqueous core. The highly reflective plate faces of the crystals are all aligned tangentially to the particle surface with the optical axes projecting radially outwards, forming a birefringent spherulite which efficiently scatters light. The nanoparticle assemblies form a broadband reflective sheath around the screening pigments of the eye, resulting in pronounced eye-shine when the animal is viewed from a dorsal-posterior direction, rendering the eye pigments inconspicuous. We assess possible functions of the PR-layer and conclude that it likely functions as a camouflage device to conceal the dark eye pigments in an otherwise largely transparent animal.


Asunto(s)
Crustáceos/química , Nanopartículas/química , Retina/química , Animales , Luz , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Fenómenos Ópticos , Xantopterina/química
17.
Chirality ; 32(3): 324-333, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31877236

RESUMEN

A simple and sensitive method has been established based on pass-through cleanup and high-performance liquid chromatography quadrupole-orbitrap mass spectrometry (HPLC-Q/Orbitrap MS) for the simultaneous determination of ten aminoglycosides (AGs) in aquatic feeds. The extraction solution and cleanup procedure had been optimized, and good sensitivity, accuracy, and precision were obtained. The calibration curves of AGs were linearity (R2 > 0.99) in the range of 2.0 to 200 µg/L (or 5.0 to 500 µg/L). The limits of detection of AGs were between 10 and 25 µg/kg. The recoveries of AGs ranged from 74.9% to 94.3%, and the intraday and interday relative standard deviations were less than 15%. Finally, this method was successfully applied to determine ten AGs in 30 aquatic feed samples. It might be the first time to use pass-through cleanup approach combined with HPLC-Q/Orbitrap MS method for AGs determination in aquatic feed samples.


Asunto(s)
Aminoglicósidos/análisis , Alimentación Animal/análisis , Antibacterianos/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Aminoglicósidos/química , Animales , Antibacterianos/química , Calibración , China , Crustáceos/química , Peces , Límite de Detección , Reproducibilidad de los Resultados
18.
Biosci Biotechnol Biochem ; 84(3): 455-462, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31738665

RESUMEN

Although not fully investigated, 8-HEPE, 8-HETE, and 10-HDHA have potentially beneficial effects for human health. Euphausia pacifica (North Pacific krill) is unique in containing several ppm level of 8R-HEPE, and sub-ppm levels of 8R-HETE and 10R-HDHA. Obtaining sufficient quantities of these compounds is a major bottleneck for conducting in vivo experiments to evaluate their biological activities. In this study, we examined an efficient way of obtaining 8R-HEPE, 8R-HETE, and 10R-HDHA by enzymatic production in E. pacifica. We devised a novel method to purify 199.4 mg of 8R-HEPE, 2.1 mg of 8R-HETE and 5.6 mg of 10R-HDHA from 1 kg of E. pacifica. We identified the stereochemistry of the hydroxy group at C-8 of HEPE and HETE and C-10 of HDHA as the R configuration by chiral column chromatography analysis using LC/QTOFMS.Abbreviations: 8-HEPE: 8-hydroxy-eicosapentaenoic acid; 8-HETE: 8-hydroxy-eicosatetraenoic acid; 10-HDHA: 10-hydroxy-docosahexaenoic acid; EPA: eicosapentaenoic acid; TLC-FID, thin layer chromatograph-Flame Ionization Detector; LC/QTOFMS: liquid chromatography/hybrid quadrupole time of flight mass spectrometry.


Asunto(s)
Ácidos Araquidónicos/análisis , Crustáceos/química , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas
19.
Mar Drugs ; 18(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751216

RESUMEN

In early 2018, a large easterly storm hit the East Anglian coast of the UK, colloquially known as the 'Beast from the East', which also resulted in mass strandings of benthic organisms. There were subsequent instances of dogs consuming such organisms, leading to illness and, in some cases, fatalities. Epidemiological investigations identified paralytic shellfish toxins (PSTs) as the cause, with toxins present in a range of species and concentrations exceeding 14,000 µg STX eq./kg in the sunstar Crossaster papposus. This study sought to better elucidate the geographic spread of any toxicity and identify any key organisms of concern. During the summers of 2018 and 2019, various species of benthic invertebrates were collected from demersal trawl surveys conducted across a variety of locations in the North Sea. An analysis of the benthic epifauna using two independent PST testing methods identified a 'hot spot' of toxic organisms in the Southern Bight, with a mean toxicity of 449 µg STX eq./kg. PSTs were quantified in sea chervil (Alcyonidium diaphanum), the first known detection in the phylum bryozoan, as well as eleven other new vectors (>50 µg STX eq./kg), namely the opisthobranch Scaphander lignarius, the starfish Anseropoda placenta, Asterias rubens, Luidia ciliaris, Astropecten irregularis and Stichastrella rosea, the brittlestar Ophiura ophiura, the crustaceans Atelecyclus rotundatus and Munida rugosa, the sea mouse Aphrodita aculeata, and the sea urchin Psammechinus miliaris. The two species that showed consistently high PST concentrations were C. papposus and A. diaphanum. Two toxic profiles were identified, with one dominated by dcSTX (decarbamoylsaxitoxin) associated with the majority of samples across the whole sampling region. The second profile occurred only in North-Eastern England and consisted of mostly STX (Saxitoxin) and GTX2 (gonyautoxin 2). Consequently, this study highlights widespread and variable levels of PSTs in the marine benthos, together with the first evidence for toxicity in a large number of new species. These findings highlight impacts to 'One Health', with the unexpected sources of toxins potentially creating risks to animal, human and environmental health, with further work required to assess the severity and geographical/temporal extent of these impacts.


Asunto(s)
Organismos Acuáticos/química , Saxitoxina/análogos & derivados , Intoxicación por Mariscos , Animales , Crustáceos/química , Monitoreo del Ambiente , Mar del Norte , Saxitoxina/análisis , Erizos de Mar/química , Estrellas de Mar/química
20.
Mar Drugs ; 18(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31978959

RESUMEN

The effects of chitosan with 95% deacetylation degree (DD95) on the spore germination, cell proliferation, and heat resistance of Clostridium perfringens CCRC 10,648 and CCRC 13,019 were investigated, and its application on pork sausage with sodium nitrite reduction was also evaluated. DD95 chitosan can strongly reduce the heat resistance of both strains. The D80 and D100 values for strain CCRC 13,019 decreased from 40.98 and 4.64 min to 39.21 and 3.26 min, respectively, as a result of adding 250 ppm DD95; meanwhile, addition of chitosan decreased the D80 and D100 values for CCRC 10,648 from 41.15 and 6.46 min to 39.52 and 3.78 min, respectively. In pork sausage, addition of 3000 ppm DD95 chitosan considerably slowed down the bacterial proliferation and volatile basic nitrogen production. There were no significant differences in color (L* and b* values), shearing force, and hardness in the pork sausages with or without DD95 chitosan during storage at 4 and 25 °C. However, the addition of DD95 chitosan in pork sausage significantly retarded the decrease of the a* value. Therefore, DD95 chitosan could reduce the concentration of sodium nitrite required in pork sausages for color retention.


Asunto(s)
Quitosano/administración & dosificación , Infecciones por Clostridium/prevención & control , Clostridium perfringens/efectos de los fármacos , Conservantes de Alimentos/administración & dosificación , Enfermedades Transmitidas por los Alimentos/prevención & control , Productos de la Carne/microbiología , Animales , Proliferación Celular/efectos de los fármacos , Quitosano/aislamiento & purificación , Infecciones por Clostridium/microbiología , Clostridium perfringens/aislamiento & purificación , Crustáceos/química , Conservación de Alimentos/métodos , Conservantes de Alimentos/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Nitrito de Sodio/administración & dosificación , Esporas Bacterianas/aislamiento & purificación , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA