Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34081701

RESUMEN

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Asunto(s)
Hígado Graso/genética , Macrófagos/metabolismo , Anomalías Musculoesqueléticas/genética , Desarrollo Musculoesquelético/genética , Osteopetrosis/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Embrión de Mamíferos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/terapia , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Reporteros , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/deficiencia , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Macrófagos/patología , Masculino , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Anomalías Musculoesqueléticas/terapia , Osteopetrosis/metabolismo , Osteopetrosis/patología , Osteopetrosis/terapia , Ratas , Ratas Transgénicas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia
2.
Development ; 147(3)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31932350

RESUMEN

Nascent myotubes undergo a dramatic morphological transformation during myogenesis, in which the myotubes elongate over several cell diameters and are directed to the correct muscle attachment sites. Although this process of myotube guidance is essential to pattern the musculoskeletal system, the mechanisms that control myotube guidance remain poorly understood. Using transcriptomics, we found that components of the Fibroblast Growth Factor (FGF) signaling pathway were enriched in nascent myotubes in Drosophila embryos. Null mutations in the FGF receptor heartless (htl), or its ligands, caused significant myotube guidance defects. The FGF ligand Pyramus is expressed broadly in the ectoderm, and ectopic Pyramus expression disrupted muscle patterning. Mechanistically, Htl regulates the activity of Rho/Rac GTPases in nascent myotubes and effects changes in the actin cytoskeleton. FGF signals are thus essential regulators of myotube guidance that act through cytoskeletal regulatory proteins to pattern the musculoskeletal system.


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ectodermo/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Ligandos , Masculino , Desarrollo Musculoesquelético/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rho/metabolismo
3.
Dev Biol ; 472: 98-114, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484703

RESUMEN

microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Desarrollo Musculoesquelético/genética , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/genética , Proteína Wnt1/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Femenino , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Masculino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Fenotipo , Transducción de Señal/genética , Strongylocentrotus purpuratus/metabolismo , Factores de Transcripción/metabolismo
4.
FASEB J ; 33(8): 9116-9130, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31100023

RESUMEN

Tendons are an essential part of the musculoskeletal system, connecting muscle and skeletal elements to enable force generation. The transcription factor scleraxis marks vertebrate tendons from early specification. Scleraxis-null mice are viable and have a range of tendon and bone defects in the trunk and limbs but no described cranial phenotype. We report the expression of zebrafish scleraxis orthologs: scleraxis homolog (scx)-a and scxb in cranial and intramuscular tendons and in other skeletal elements. Single mutants for either scxa or scxb, generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), are viable and fertile as adult fish. Although scxb mutants show no obvious phenotype, scxa mutant embryos have defects in cranial tendon maturation and muscle misalignment. Mutation of both scleraxis genes results in more severe defects in cranial tendon differentiation, muscle and cartilage dysmorphogenesis and paralysis, and lethality by 2-5 wk, which indicates an essential function of scleraxis for craniofacial development. At juvenile and adult stages, ribs in scxa mutants fail to mineralize and/or are small and heavily fractured. Scxa mutants also have smaller muscle volume, abnormal swim movement, and defects in bone growth and composition. Scleraxis function is therefore essential for normal craniofacial form and function and vital for fish development.-Kague, E., Hughes, S. M., Lawrence, E. A., Cross, S., Martin-Silverstone, E., Hammond, C. L., Hinits, Y. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Desarrollo Musculoesquelético/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Desarrollo Óseo/genética , Calcificación Fisiológica/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Costillas/anomalías , Costillas/crecimiento & desarrollo , Costillas/metabolismo , Tendones/anomalías , Tendones/crecimiento & desarrollo , Tendones/metabolismo , Pez Cebra/metabolismo
5.
Development ; 139(3): 579-90, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22190640

RESUMEN

A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Mesenquimatosas/fisiología , Morfogénesis/genética , Desarrollo Musculoesquelético/genética , Erizos de Mar/crecimiento & desarrollo , Animales , Erizos de Mar/genética
6.
J Biomed Sci ; 21: 44, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24885110

RESUMEN

BACKGROUND: Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (µCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with µCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. RESULTS: Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. CONCLUSIONS: Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Desarrollo Musculoesquelético/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/deficiencia , Displasia Cleidocraneal/etiología , Displasia Cleidocraneal/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Mutación Missense , Fenotipo , Cráneo/crecimiento & desarrollo
7.
Dev Dyn ; 242(9): 1021-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23821404

RESUMEN

Heparan sulfate (HS) is an essential component of cell surface and matrix-associated proteoglycans. Due to their sulfation patterns, the HS chains interact with numerous signaling proteins and regulate their distribution and activity on target cells. Many of these proteins, including bone morphogenetic protein family members, are expressed in the growth plate of developing skeletal elements, and several skeletal phenotypes are caused by mutations in those proteins as well as in HS-synthesizing and modifying enzymes. The disease we discuss here is hereditary multiple exostoses (HME), a disorder caused by mutations in HS synthesizing enzymes EXT1 and EXT2, leading to HS deficiency. The exostoses are benign cartilaginous-bony outgrowths, form next to growth plates, can cause growth retardation and deformities, chronic pain and impaired motion, and progress to malignancy in 2-5% of patients. We describe recent advancements on HME pathogenesis and exostosis formation deriving from studies that have determined distribution, activities and roles of signaling proteins in wild-type and HS-deficient cells and tissues. Aberrant distribution of signaling factors combined with aberrant responsiveness of target cells to those same factors appear to be a major culprit in exostosis formation. Insights from these studies suggest plausible and cogent ideas about how HME could be treated in the future.


Asunto(s)
Huesos , Exostosis Múltiple Hereditaria , Heparitina Sulfato , Desarrollo Musculoesquelético/genética , N-Acetilglucosaminiltransferasas , Animales , Huesos/enzimología , Huesos/patología , Exostosis Múltiple Hereditaria/enzimología , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/patología , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
8.
Hum Mol Genet ; 20(2): 271-85, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20962035

RESUMEN

Brachydactyly type B (BDB1) and Robinow syndrome (RRS) are two skeletal disorders caused by mutations in ROR2, a co-receptor of Wnt5a. Wnt5a/Ror2 can activate multiple branches of non-canonical Wnt signaling, but it is unclear which branch(es) mediates Wnt5a/Ror2 function in limb skeletal development. Here, we provide evidence implicating the planar cell polarity (PCP) pathway as the downstream component of Wnt5a in the limb. We show that a mutation in the mouse PCP gene Vangl2 causes digit defects resembling the clinical phenotypes in BDB1, including loss of phalanges. Halving the dosage of Wnt5a in Vangl2 mutants enhances the severity and penetrance of the digit defects and causes long bone defects reminiscent of RRS, suggesting that Wnt5a and Vangl2 function in the same pathway and disruption of PCP signaling may underlie both BDB1 and RRS. Consistent with a role for PCP signaling in tissue morphogenesis, mutation of Vangl2 alters the shape and dimensions of early limb buds: the width and thickness are increased, whereas the length is decreased. The digit pre-chondrogenic condensates also become wider, thicker and shorter. Interestingly, altered limb bud dimensions in Vangl2 mutants also affect limb growth by perturbing the signaling network that regulates the balance between Fgf and Bmp signaling. Halving the dosage of Bmp4 partially suppresses the loss of phalanges in Vangl2 mutants, supporting the hypothesis that an aberrant increase in Bmp signaling is the cause of the brachydactyly defect. These findings provide novel insight into the signaling mechanisms of Wnt5a/Ror2 and the pathogenesis in BDB1 and RRS.


Asunto(s)
Deformidades Congénitas de las Extremidades , Anomalías Maxilofaciales , Morfogénesis/genética , Desarrollo Musculoesquelético/genética , Transducción de Señal/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Animales , Proteína Morfogenética Ósea 4/antagonistas & inhibidores , Proteína Morfogenética Ósea 4/genética , Polaridad Celular/fisiología , Supervivencia Celular/genética , Dosificación de Gen , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Esbozos de los Miembros/anomalías , Deformidades Congénitas de las Extremidades/embriología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/metabolismo , Deformidades Congénitas de las Extremidades/patología , Anomalías Maxilofaciales/embriología , Anomalías Maxilofaciales/genética , Anomalías Maxilofaciales/patología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/embriología , Columna Vertebral/patología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
9.
Development ; 137(17): 2807-17, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699295

RESUMEN

The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.


Asunto(s)
Desarrollo Musculoesquelético , Tendones/embriología , Animales , Drosophila/embriología , Drosophila/genética , Drosophila/fisiología , Músculos/embriología , Músculos/fisiología , Desarrollo Musculoesquelético/genética , Desarrollo Musculoesquelético/fisiología , Transducción de Señal , Tendones/fisiología , Vertebrados/embriología , Vertebrados/genética , Vertebrados/fisiología
10.
Genesis ; 49(1): 2-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21254332

RESUMEN

Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development.


Asunto(s)
Proteínas de Homeodominio/genética , Tendones/embriología , Animales , Tipificación del Cuerpo/genética , Ratones , Ratones Noqueados , Desarrollo Musculoesquelético/genética , Sistema Musculoesquelético/anatomía & histología , Sistema Musculoesquelético/embriología , Recombinación Genética , Proteínas Represoras/genética
11.
Biotechnol Lett ; 33(8): 1551-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21484342

RESUMEN

Sox9 is expressed in multiple tissues during mouse development and adulthood. Mutations in the Sox9 gene or changes in expression levels can be attributed to many congenital diseases. Heterozygous loss-of-function mutations in the human SOX9 gene cause Campomelic dysplasia, a semi-lethal skeletal malformation syndrome. Disruption of Sox9 by conventional gene targeting leads to perinatal lethality in heterozygous mice, hence hampering the feasibility to obtain the homozygous Sox9 null mice for in vivo functional studies. In this study, we generated a conditional allele of Sox9 (Sox9 ( tm4.Tlu )) by flanking exon 1 with loxP sites. Homozygous mice for the Sox9 ( tm4.Tlu ) allele (Sox9 ( flox/flox )) are viable, fertile and indistinguishable from wildtype (WT) mice, indicating that the Sox9 ( tm4.Tlu ) allele is a fully functional Sox9 allele. Furthermore, we demonstrated that Cre-mediated recombination using a Col2a1-Cre line resulted in specific ablation of Sox9 activity in cartilage tissues.


Asunto(s)
Alelos , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes/métodos , Factor de Transcripción SOX9/genética , Animales , Clonación Molecular , Colágeno Tipo II/genética , Embrión de Mamíferos , Miembro Anterior/embriología , Miembro Anterior/patología , Dosificación de Gen , Marcación de Gen , Histocitoquímica , Integrasas/genética , Ratones , Ratones Noqueados , Modelos Genéticos , Desarrollo Musculoesquelético/genética , Columna Vertebral/embriología , Columna Vertebral/patología
12.
Curr Opin Genet Dev ; 69: 42-47, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33647833

RESUMEN

Naturalists leading up to the early 20th century were captivated by the diversity of limb form and function and described its development in a variety of species. The advent of discoveries in genetics followed by molecular biology led to focused efforts in few 'model' species, namely mouse and chicken, to understand conserved mechanisms of limb axis specification and development of the musculoskeletal system. 'Non-traditional' species largely fell by the wayside until their recent resurgence into the spotlight with advances in next-generation sequencing technologies (NGS). In this review, we focus on how the use of NGS has provided insights into the development, loss, and diversification of amniote limbs. Coupled with advances in chromatin interrogation techniques and functional tests in vivo, NGS is opening possibilities to understand the genetic mechanisms that govern the remarkable radiation of vertebrate limb form and function.


Asunto(s)
Extremidades/crecimiento & desarrollo , Variación Genética/genética , Desarrollo Musculoesquelético/genética , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Sistema Musculoesquelético/metabolismo , Fenotipo , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
13.
Methods Mol Biol ; 2230: 115-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197012

RESUMEN

The biological signals that coordinate the three-dimensional outgrowth and patterning of the vertebrate limb bud have been well delineated. These include a number of vital embryonic signaling pathways, including the fibroblast growth factor, WNT, transforming growth factor, and hedgehog. Collectively these signals converge on multiple progenitor populations to drive the formation of a variety of tissues that make up the limb musculoskeletal system, such as muscle, tendon, cartilage, stroma, and bone. The basic mechanisms regulating the commitment and differentiation of diverse limb progenitor populations has been successfully modeled in vitro using high density primary limb mesenchymal or micromass cultures. However, this approach is limited in its ability to more faithfully recapitulate the assembly of progenitors into organized tissues that span the entire musculoskeletal system. Other biological systems have benefitted from the development and availability of three-dimensional organoid cultures which have transformed our understanding of tissue development, homeostasis and regeneration. Such a system does not exist that effectively models the complexity of limb development. However, limb bud organ cultures while still necessitating the use of collected embryonic tissue have proved to be a powerful model system to elucidate the molecular underpinning of musculoskeletal development. In this methods article, the derivation and use of limb bud organ cultures from murine limb buds will be described, along with strategies to manipulate signaling pathways, examine gene expression and for longitudinal lineage tracking.


Asunto(s)
Hibridación in Situ/métodos , Mesodermo/crecimiento & desarrollo , Desarrollo Musculoesquelético/genética , Técnicas de Cultivo de Órganos/métodos , Animales , Cartílago/crecimiento & desarrollo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Humanos , Esbozos de los Miembros/crecimiento & desarrollo , Esbozos de los Miembros/metabolismo , Mesodermo/metabolismo , Ratones , Transducción de Señal/genética
14.
Hereditas ; 147(3): 132-5, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20626768

RESUMEN

The results obtained in the present study made it possible to place selected markers responsible for development of the nervous and skeletal systems on the physical map of the donkey genome. Fluorescence in situ hybridization (FISH) was used to localize genes such as GDF5 (15q13), FRZB (4q23.1), TWIST (1q31), PAX6 (20q25), SALL1 (24q15) and SHH (1q35) on donkey chromosomes. The identification of their localization confirmed previously proposed homologies using ZOO-FISH technique, except for FRZB and SALL1 genes. This suggests that they were affected by rearrangements that changed their localization compared to horse, and in the case of the SALL1 gene also compared to human.


Asunto(s)
Cromosomas/genética , Equidae/genética , Genes/genética , Hibridación Fluorescente in Situ , Desarrollo Musculoesquelético/genética , Sistema Nervioso/crecimiento & desarrollo , Animales , Mapeo Cromosómico , Proteínas del Ojo/genética , Glicoproteínas/genética , Factor 5 de Diferenciación de Crecimiento/genética , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteína 1 Relacionada con Twist/genética
15.
Curr Top Dev Biol ; 132: 451-486, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30797517

RESUMEN

The limb musculoskeletal system provides a primary means for locomotion, manipulation of objects and protection for most vertebrate organisms. Intricate integration of the bone, tendon and muscle tissues are required for function. These three tissues arise largely independent of one another, but the connections formed during later development are maintained throughout life and are re-established following injury. Each of these tissues also have mesenchymal stem/progenitor cells that function in maintenance and repair. Here in, we will review the major events in the development of limb skeleton, tendon, and muscle tissues, their response to injury, and discuss current knowledge regarding resident progenitor/stem cells within each tissue that participate in development, repair, and regeneration in vivo.


Asunto(s)
Extremidades/embriología , Extremidades/fisiología , Desarrollo Musculoesquelético/fisiología , Regeneración/fisiología , Animales , Huesos/citología , Huesos/embriología , Huesos/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Músculos/citología , Músculos/embriología , Músculos/fisiología , Desarrollo Musculoesquelético/genética , Regeneración/genética , Células Madre/metabolismo , Células Madre/fisiología , Tendones/citología , Tendones/embriología , Tendones/fisiología
16.
Nat Commun ; 8(1): 121, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743860

RESUMEN

Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.


Asunto(s)
Proteínas Portadoras/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo/métodos , Metaanálisis como Asunto , Desarrollo Musculoesquelético/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Peso Corporal , Densidad Ósea , Niño , Femenino , Expresión Génica , Humanos , Masculino , Análisis Multivariante , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
17.
Ann N Y Acad Sci ; 1409(1): 67-78, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28990185

RESUMEN

Postaxial limb hypoplasia (PALH) is a group of nonhereditary diseases with congenital lower limb deficiency affecting the fibular ray, including fibular hemimelia, proximal femoral focal deficiency, and tarsal coalition. The etiology and the developmental biology of the anomaly are still not fully understood. Here, we review the previous classification systems, present the clinical features, and discuss the developmental biology of PALH.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Mutación , Ectromelia/embriología , Ectromelia/genética , Ectromelia/patología , Peroné/anomalías , Humanos , Deformidades Congénitas de las Extremidades/clasificación , Desarrollo Musculoesquelético/genética , Transducción de Señal/genética
18.
Sci Rep ; 7: 45010, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28327634

RESUMEN

Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Desarrollo Musculoesquelético/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Cartílago/anomalías , Cartílago/metabolismo , Regulación del Desarrollo de la Expresión Génica , Orden Génico , Marcación de Gen , Genes Reporteros , Sitios Genéticos , Recombinación Homóloga , Ligamentos/anomalías , Ligamentos/crecimiento & desarrollo , Ligamentos/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Factor de Transcripción SOX9/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Tendones/anomalías , Tendones/crecimiento & desarrollo , Tendones/metabolismo
20.
Expert Opin Drug Metab Toxicol ; 9(9): 1139-53, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23650932

RESUMEN

INTRODUCTION: Glycine conjugation of mitochondrial acyl-CoAs, catalyzed by glycine N-acyltransferase (GLYAT, E.C. 2.3.1.13), is an important metabolic pathway responsible for maintaining adequate levels of free coenzyme A (CoASH). However, because of the small number of pharmaceutical drugs that are conjugated to glycine, the pathway has not yet been characterized in detail. Here, we review the causes and possible consequences of interindividual variation in the glycine conjugation pathway. AREAS COVERED: The authors review the importance of CoASH in metabolism, formation and toxicity of xenobiotic acyl-CoAs, and mechanisms for restoring levels of CoASH. They focus on GLYAT, glycine conjugation, how genetic variation in the GLYAT gene could influence glycine conjugation, and the emerging roles of glycine metabolism in cancer and musculoskeletal development. EXPERT OPINION: The substrate selectivity of GLYAT and its variants needs to be further characterized, as organic acids can be toxic if the corresponding acyl-CoA is not a substrate for glycine conjugation. GLYAT activity affects mitochondrial ATP production, glycine availability, CoASH availability, and the toxicity of various organic acids. Therefore, variation in the glycine conjugation pathway could influence liver cancer, musculoskeletal development, and mitochondrial energy metabolism.


Asunto(s)
Aciltransferasas/metabolismo , Glicina/metabolismo , Aciltransferasas/genética , Coenzima A/metabolismo , Hepatitis/genética , Hepatitis/patología , Humanos , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/toxicidad , Inactivación Metabólica , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Mitocondrias/metabolismo , Desarrollo Musculoesquelético/genética , Polimorfismo de Nucleótido Simple , Xenobióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA