RESUMEN
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Asunto(s)
Adipocitos Marrones/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólisis , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirtuinas/metabolismo , Adipocitos Marrones/citología , Animales , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Sirtuinas/genéticaRESUMEN
Proximity-dependent biotin labeling (BioID) may identify new targets for cancers driven by difficult-to-drug oncogenes such as Ras. Therefore, BioID was used with wild-type (WT) and oncogenic mutant (MT) H-, K-, and N-Ras, identifying known interactors, including Raf and PI3K, as well as a common set of 130 novel proteins proximal to all Ras isoforms. A CRISPR screen of these proteins for Ras dependence identified mTOR, which was also found proximal to MT Ras in human tumors. Oncogenic Ras directly bound two mTOR complex 2 (mTORC2) components, mTOR and MAPKAP1, to promote mTORC2 kinase activity at the plasma membrane. mTORC2 enabled the Ras pro-proliferative cell cycle transcriptional program, and perturbing the Ras-mTORC2 interaction impaired Ras-dependent neoplasia in vivo. Combining proximity-dependent proteomics with CRISPR screening identified a new set of functional Ras-associated proteins, defined mTORC2 as a new direct Ras effector, and offers a strategy for finding new proteins that cooperate with dominant oncogenes.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neoplasias/metabolismo , Proteoma , Proteínas ras/metabolismo , Animales , Sitios de Unión , Sistemas CRISPR-Cas , Células CACO-2 , Puntos de Control del Ciclo Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones Pelados , Ratones SCID , Ratones Transgénicos , Mutación , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos , Carga Tumoral , Proteínas ras/genéticaRESUMEN
Growth factor signaling is initiated at the plasma membrane and propagated through the cytoplasm for eventual relay to intracellular organelles such as lysosomes. The serine/threonine kinase mTOR participates in growth factor signaling as a component of two multi-subunit complexes, mTORC1 and mTORC2. mTORC1 associates with lysosomes, and its activity depends on the positioning of lysosomes within the cytoplasm, although there is no consensus regarding the exact effect of perinuclear versus peripheral distribution. mTORC2 and its substrate kinase AKT have a widespread distribution, but they are thought to act mainly at the plasma membrane. Using cell lines with knockout of components of the lysosome-positioning machinery, we show that perinuclear clustering of lysosomes delays reactivation of not only mTORC1, but also mTORC2 and AKT upon serum replenishment. These experiments demonstrate the existence of pools of mTORC2 and AKT that are sensitive to lysosome positioning.
Asunto(s)
Núcleo Celular/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Ribosilacion-ADP/deficiencia , Factores de Ribosilacion-ADP/genética , Sistemas CRISPR-Cas , Núcleo Celular/ultraestructura , Medio de Cultivo Libre de Suero , Endosomas/metabolismo , Endosomas/ultraestructura , Edición Génica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinesinas/deficiencia , Cinesinas/genética , Lisosomas/ultraestructura , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de SeñalRESUMEN
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.
Asunto(s)
Histona Acetiltransferasas , Activación de Macrófagos , Transducción de Señal , Animales , Codón/metabolismo , Histona Acetiltransferasas/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , RatonesRESUMEN
Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Transducción de Señal/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Receptores PatchedRESUMEN
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3ß, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3ß inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3ß, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3ß axis.
Asunto(s)
Retículo Endoplásmico , Mitocondrias , Chaperonas Moleculares , Proteínas de Complejo Poro Nuclear , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Complejos Multiproteicos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.
Asunto(s)
Ácido Ascórbico , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Ácido Ascórbico/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Transcripción/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismoRESUMEN
Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.
Asunto(s)
Regulación hacia Abajo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Ácido Acético/farmacología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Ácidos Grasos Monoinsaturados/farmacología , Eliminación de Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transducción de Señal/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Mutación/genética , Tamaño Corporal/genéticaRESUMEN
Recent research has identified the mechanistic Target of Rapamycin Complex 2 (mTORC2) as a conserved direct effector of Ras proteins. While previous studies suggested the involvement of the Switch I (SWI) effector domain of Ras in binding mTORC2 components, the regulation of the Ras-mTORC2 pathway is not entirely understood. In Dictyostelium, mTORC2 is selectively activated by the Ras protein RasC, and the RasC-mTORC2 pathway then mediates chemotaxis to cAMP and cellular aggregation by regulating the actin cytoskeleton and promoting cAMP signal relay. Here, we investigated the role of specific residues in RasC's SWI, C-terminal allosteric domain, and hypervariable region (HVR) related to mTORC2 activation. Interestingly, our results suggest that RasC SWI residue A31, which was previously implicated in RasC-mediated aggregation, regulates RasC's specific activation by the Aimless RasGEF. On the other hand, our investigation identified a crucial role for RasC SWI residue T36, with secondary contributions from E38 and allosteric domain residues. Finally, we found that conserved basic residues and the adjacent prenylation site in the HVR, which are crucial for RasC's membrane localization, are essential for RasC-mTORC2 pathway activation by allowing for both RasC's own cAMP-induced activation and its subsequent activation of mTORC2. Therefore, our findings revealed new determinants of RasC-mTORC2 pathway specificity in Dictyostelium, contributing to a deeper understanding of Ras signaling regulation in eukaryotic cells.
Asunto(s)
Dictyostelium , Diana Mecanicista del Complejo 2 de la Rapamicina , Transducción de Señal , Proteínas ras , Dictyostelium/metabolismo , Dictyostelium/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Proteínas ras/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , AMP Cíclico/metabolismoRESUMEN
TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.
Asunto(s)
Daño del ADN , Histonas , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Histonas/metabolismo , Histonas/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Transducción de Señal , Fosforilación , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Humanos , Proteínas Serina-Treonina QuinasasRESUMEN
The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Sirolimus , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Línea Celular , Ribosomas/metabolismo , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
BACKGROUND: Lymphatic valves are specialized structures in collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves. Conventionally, in many cell types, AKT is phosphorylated at Ser473 by the mTORC2 (mammalian target of rapamycin complex 2). However, mTORC2 has not yet been implicated in lymphatic valve formation. METHODS: In vivo and in vitro techniques were used to investigate the role of Rictor, a critical component of mTORC2, in lymphatic endothelium. RESULTS: Here, we showed that embryonic and postnatal lymphatic deletion of Rictor, a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human dermal lymphatic endothelial cells not only reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions but also abolished the upregulation of AKT activity and valve-forming genes in response to oscillatory shear stress. We further showed that the AKT target, FOXO1 (forkhead box protein O1), a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric lymphatic endothelial cells in vivo. Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in lymphatic vessels of the ear and mesentery. CONCLUSIONS: Our work identifies a novel role for RICTOR in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately enables the formation and maintenance of lymphatic valves.
Asunto(s)
Proteínas Portadoras , Proteína Forkhead Box O1 , Linfangiogénesis , Vasos Linfáticos , Diana Mecanicista del Complejo 2 de la Rapamicina , Mecanotransducción Celular , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal , Animales , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Vasos Linfáticos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Humanos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Células Cultivadas , Serina-Treonina Quinasas TOR/metabolismo , Fosforilación , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Ratones Endogámicos C57BL , Interferencia de ARN , TransfecciónRESUMEN
The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Acetiltransferasas/genética , Replicación del ADN/genética , Proteínas Fúngicas/genética , Heterocromatina/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genéticaRESUMEN
The Food and Drug Administrationapproved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.
Asunto(s)
Pérdida Auditiva Sensorineural/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/prevención & control , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Sirolimus/efectos adversos , Sirolimus/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Hyperactivation of PI3K/PTEN-mTOR signaling during neural development is associated with focal cortical dysplasia (FCD), autism, and epilepsy. mTOR can signal through two major hubs, mTORC1 and mTORC2, both of which are hyperactive following PTEN loss of function (LOF). Here, we tested the hypothesis that genetic inactivation of the mTORC2 complex via deletion of Rictor is sufficient to rescue morphologic and electrophysiological abnormalities in the dentate gyrus caused by PTEN loss, as well as generalized seizures. An established, early postnatal mouse model of PTEN loss in male and female mice showed spontaneous seizures that were not prevented by mTORC2 inactivation. This lack of rescue occurred despite the normalization or amelioration of many morphologic and electrophysiological phenotypes. However, increased excitatory connectivity proximal to dentate gyrus granule neuron somas was not normalized by mTORC2 inactivation. Further studies demonstrated that, although mTORC2 inactivation largely rescued the dendritic arbor overgrowth caused by PTEN LOF, it increased synaptic strength and caused additional impairments of presynaptic function. These results suggest that a constrained increase in excitatory connectivity and co-occurring synaptic dysfunction is sufficient to generate seizures downstream of PTEN LOF, even in the absence of characteristic changes in morphologic properties.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand the physiological mechanisms downstream of Pten loss that cause epilepsy, as well as the therapeutic potential of targeted gene therapies, we tested whether genetic inactivation of the mTORC2 complex could improve the cellular, synaptic, and in vivo effects of Pten loss in the dentate gyrus. We found that mTORC2 inhibition improved or rescued all morphologic effects of Pten loss in the dentate gyrus, but synaptic changes and seizures persisted. These data suggest that synaptic dysfunction can drive epilepsy caused by hyperactivation of PI3K/PTEN-mTOR, and that future therapies should focus on this mechanistic link.
Asunto(s)
Epilepsia , Convulsiones , Masculino , Femenino , Ratones , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Homocigoto , Ratones Noqueados , Eliminación de Secuencia , Serina-Treonina Quinasas TOR/genética , Epilepsia/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-QuinasasRESUMEN
BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.
Asunto(s)
Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 2 de la Rapamicina , Melanoma , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteína Asociada al mTOR Insensible a la Rapamicina , Animales , Humanos , Ratones , Línea Celular Tumoral , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Melanoma/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteómica/métodos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidoresRESUMEN
The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.
Asunto(s)
Regulación hacia Abajo , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Ubiquitina , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Espectrometría de Masas , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Modelos Moleculares , Conformación Proteica , Isoformas de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de SeñalRESUMEN
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.