Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217601

RESUMEN

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistencia a los Herbicidas/genética , Insecticidas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia , Brassicaceae/metabolismo , Dicamba , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , ARN de Planta/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos
2.
Environ Sci Technol ; 58(27): 12062-12072, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38917340

RESUMEN

Dicamba is a semivolatile herbicide that has caused widespread unintentional damage to vegetation due to its volatilization from genetically engineered dicamba-tolerant crops. Strategies to reduce dicamba volatilization rely on the use of formulations containing amines, which deprotonate dicamba to generate a nonvolatile anion in aqueous solution. Dicamba volatilization in the field is also expected to occur after aqueous spray droplets dry to produce a residue; however, dicamba speciation in this phase is poorly understood. We applied Fourier transform infrared (FTIR) spectroscopy to evaluate dicamba protonation state in dried dicamba-amine residues. We first demonstrated that commercially relevant amines such as diglycolamine (DGA) and n,n-bis(3-aminopropyl)methylamine (BAPMA) fully deprotonated dicamba when applied at an equimolar molar ratio, while dimethylamine (DMA) allowed neutral dicamba to remain detectable, which corresponded to greater dicamba volatilization. Expanding the amines tested, we determined that dicamba speciation in the residues was unrelated to solution-phase amine pKa, but instead was affected by other amine characteristics (i.e., number of hydrogen bonding sites) that also correlated with greater dicamba volatilization. Finally, we characterized dicamba-amine residues containing an additional component (i.e., the herbicide S-metolachlor registered for use alongside dicamba) to investigate dicamba speciation in a more complex chemical environment encountered in field applications.


Asunto(s)
Aminas , Dicamba , Herbicidas , Aminas/química , Dicamba/química , Volatilización , Herbicidas/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
Biochemistry ; 62(11): 1807-1822, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188334

RESUMEN

Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.


Asunto(s)
Oxigenasas de Función Mixta , Oxigenasas , Oxigenasas/química , Oxigenasas de Función Mixta/metabolismo , Dicamba/metabolismo , Oxidación-Reducción , Hierro
4.
Environ Res ; 228: 115906, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062480

RESUMEN

Wide-scale emergence of glyphosate-resistant weeds has led to an increase in the simultaneous application of herbicide mixtures exacerbated by the introduction of crops tolerant to glyphosate plus dicamba or glyphosate plus 2,4-D. This raises serious concerns regarding the environmental and health risks resulting from increased exposure to a mixture of herbicide active ingredients. We evaluated hepatotoxic effects following perinatal exposure to glyphosate alone or in combination with 2,4-D and dicamba from gestational day-6 until adulthood in Wistar rats. Animals were administered with glyphosate at the European Union (EU) acceptable daily intake (ADI; 0.5 mg/kg bw/day) and no-observed-adverse-effect level (NOAEL; 50 mg/kg bw/day). A mixture of glyphosate with 2,4-D (0.3 mg/kg bw/day) and dicamba (0.02 mg/kg bw/day) with each at their EU ADI was evaluated. Redox status was determined by measuring levels of reduced glutathione, decomposition rate of Η2Ο2, glutathione reductase, glutathione peroxidase, total antioxidant capacity, thiobarbituric reactive substances, and protein carbonyls. Gene expression analysis of Nr1d1, Nr1d2, Clec2g, Ier3, and Gadd45g associated with oxidative damage to DNA, was also performed. Analysis of liver samples showed that exposure to the mixture of the three herbicides induced a marked increase in the concentration of glutathione and malondialdehyde indicative of a disturbance in redox balance. Nevertheless, the effect of increased lipid peroxidation was not discernible following a 3-month recuperation period where animals were withdrawn from pesticide exposure post-weaning. Interestingly, toxic effects caused by prenatal exposure to the glyphosate NOAEL were present after the same 3-month recovery period. No statistically significant changes in the expression of genes linked with genotoxicity were observed. Our findings reinforce the importance of assessing the combined effects of chemical pollutants at doses that are asserted by regulatory agencies to be safe individually.


Asunto(s)
Dicamba , Herbicidas , Ratas , Animales , Embarazo , Femenino , Dicamba/química , Dicamba/toxicidad , Ratas Wistar , Herbicidas/toxicidad , Herbicidas/química , Oxidación-Reducción , Ácido 2,4-Diclorofenoxiacético , Hígado , Glifosato
5.
Sensors (Basel) ; 23(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36991952

RESUMEN

Weeds can cause significant yield losses and will continue to be a problem for agricultural production due to climate change. Dicamba is widely used to control weeds in monocot crops, especially genetically engineered dicamba-tolerant (DT) dicot crops, such as soybean and cotton, which has resulted in severe off-target dicamba exposure and substantial yield losses to non-tolerant crops. There is a strong demand for non-genetically engineered DT soybeans through conventional breeding selection. Public breeding programs have identified genetic resources that confer greater tolerance to off-target dicamba damage in soybeans. Efficient and high throughput phenotyping tools can facilitate the collection of a large number of accurate crop traits to improve the breeding efficiency. This study aimed to evaluate unmanned aerial vehicle (UAV) imagery and deep-learning-based data analytic methods to quantify off-target dicamba damage in genetically diverse soybean genotypes. In this research, a total of 463 soybean genotypes were planted in five different fields (different soil types) with prolonged exposure to off-target dicamba in 2020 and 2021. Crop damage due to off-target dicamba was assessed by breeders using a 1-5 scale with a 0.5 increment, which was further classified into three classes, i.e., susceptible (≥3.5), moderate (2.0 to 3.0), and tolerant (≤1.5). A UAV platform equipped with a red-green-blue (RGB) camera was used to collect images on the same days. Collected images were stitched to generate orthomosaic images for each field, and soybean plots were manually segmented from the orthomosaic images. Deep learning models, including dense convolutional neural network-121 (DenseNet121), residual neural network-50 (ResNet50), visual geometry group-16 (VGG16), and Depthwise Separable Convolutions (Xception), were developed to quantify crop damage levels. Results show that the DenseNet121 had the best performance in classifying damage with an accuracy of 82%. The 95% binomial proportion confidence interval showed a range of accuracy from 79% to 84% (p-value ≤ 0.01). In addition, no extreme misclassifications (i.e., misclassification between tolerant and susceptible soybeans) were observed. The results are promising since soybean breeding programs typically aim to identify those genotypes with 'extreme' phenotypes (e.g., the top 10% of highly tolerant genotypes). This study demonstrates that UAV imagery and deep learning have great potential to high-throughput quantify soybean damage due to off-target dicamba and improve the efficiency of crop breeding programs in selecting soybean genotypes with desired traits.


Asunto(s)
Aprendizaje Profundo , Herbicidas , Dicamba , Herbicidas/análisis , Glycine max/genética , Dispositivos Aéreos No Tripulados , Fitomejoramiento , Productos Agrícolas/genética , Malezas
6.
J Environ Sci Health B ; 58(4): 327-333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36747441

RESUMEN

2,4-D or dicamba can cause injuries and other deleterious effects on non-tolerant soybeans. Thus, the objective was to evaluate the potential for injury of subdoses of 2,4-D or dicamba, in drift simulation, for application in non-tolerant soybeans. Two experiments were carried out, one with 2,4-D and the other with dicamba. The treatments consisted of the application, in post-emergence of non-tolerant soybean, of subdoses 0; 1.35; 2.68; 5.37; 10.72; 21.45 and 42.9 g acid equivalent (ae) ha-1 2,4-D choline salt or dicamba diglycolamine (DGA) salt. Injury symptoms in plants, plant height and yield were evaluated, and the results were subjected to regression analysis. Polynomial fit was possible for the doses of both herbicides, with deleterious effects on soybean, with reductions in height and yield. The application of 2,4-D ≥ 10.72 g ae ha-1 was enough to cause injuries greater than 10% in plants, in simulated drift. The application of dicamba ≥1.35 g ae ha-1 was enough to cause injuries greater than 30% in plants, in simulated drift. For both herbicides, greater potential for injury and reductions in soybean yield were observed for the application of the highest doses (21.45 and 42.9 g ae ha-1).


Asunto(s)
Dicamba , Herbicidas , Dicamba/toxicidad , Glycine max , Herbicidas/toxicidad , Ácido 2,4-Diclorofenoxiacético/toxicidad
7.
J Environ Sci Health B ; 58(12): 726-743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904543

RESUMEN

Accidental herbicide drift onto neighboring crops, such as soybeans, can seriously harm non-target plants, affecting their growth and productivity. This study examined the impact of simulated drift from ten different herbicides (2,4-D, dicamba, glyphosate, saflufenacil, oxyfluorfen, hexazinone, diuron, diquat, nicosulfuron, and isoxaflutole) on young soybean plants. These herbicides were applied at three simulated drift levels (1/4, 1/16, and 1/32) equivalent to recommended commercial doses, and the resulting symptoms were carefully evaluated. Simulated drift caused distinctive symptoms, including chlorosis, twisting, necrosis, and growth abnormalities, varying depending on each herbicide's mode of action. Dicamba proved more toxic than 2,4-D, and symptom severity increased with drift proportion, with all herbicides causing over 30% injury at the 1/16 proportion. Notably, 2,4-D, dicamba, glyphosate, hexazinone, and diquat exceeded the half-maximal inhibitory concentration (IC50) value, significantly reducing total biomass. Dicamba consistently caused 50% injury at all proportions, while hexazinone, at the highest dose proportion, led to plant mortality. Dicamba also had biomass accumulation beyond the growth reduction (GR50), whereas hexazinone exhibited less than 10% accumulation due to its capacity to induce plant mortality. This study emphasizes the importance of understanding herbicide drift effects on non-target crops for more effective and safe weed management strategies.


Asunto(s)
Herbicidas , Herbicidas/toxicidad , Dicamba/toxicidad , Glycine max , Diquat/farmacología , Productos Agrícolas , Ácido 2,4-Diclorofenoxiacético/farmacología
8.
Bull Environ Contam Toxicol ; 111(3): 41, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710082

RESUMEN

Dicamba (DIC) is one of the most applied auxin herbicides worldwide. Sublethal effects in the South American native fish Jenynsia lineata exposed to DIC concentrations close to environmental concentrations (0.03-30 µg/L) during 48 h were analysed thorough the evaluation of catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD) activities and malondialdehyde (MDA) and H2O2 levels for detecting potential oxidative stress. In gills MDA increased showing oxidative damage probably because of an inefficient antioxidant defense. This response evidenced the important role of gills as an organ of direct contact with waterborne contaminants. In addition, other changes in the biomarkers of oxidative stress were observed such as the inhibition of SOD activities in brain and the inhibition of GST in liver. These results show that short- term exposures to environmentally relevant concentrations of DIC could induce sublethal effects in native fish.


Asunto(s)
Dicamba , Peces , Herbicidas , Estrés Oxidativo , Animales , Dicamba/toxicidad , Glutatión Transferasa , Herbicidas/toxicidad , Peróxido de Hidrógeno , América del Sur , Superóxido Dismutasa
9.
Ann Bot ; 130(7): 1015-1028, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36415945

RESUMEN

BACKGROUND AND AIMS: When plant communities are exposed to herbicide 'drift', wherein particles containing the active ingredient travel off-target, interspecific variation in resistance or tolerance may scale up to affect community dynamics. In turn, these alterations could threaten the diversity and stability of agro-ecosystems. We investigated the effects of herbicide drift on the growth and reproduction of 25 wild plant species to make predictions about the consequences of drift exposure on plant-plant interactions and the broader ecological community. METHODS: We exposed potted plants from species that commonly occur in agricultural areas to a drift-level dose of the widely used herbicide dicamba or a control solution in the glasshouse. We evaluated species-level variation in resistance and tolerance for vegetative and floral traits. We assessed community-level impacts of drift by comparing the species evenness and flowering networks of glasshouse synthetic communities comprised of drift-exposed and control plants. KEY RESULTS: Species varied significantly in resistance and tolerance to dicamba drift: some were negatively impacted while others showed overcompensatory responses. Species also differed in the way they deployed flowers over time following drift exposure. While drift had negligible effects on community evenness based on vegetative biomass, it caused salient differences in the structure of co-flowering networks within communities. Drift reduced the degree and intensity of flowering overlap among species, altered the composition of groups of species that were more likely to co-flower with each other than with others and shifted species roles (e.g. from dominant to inferior floral producers, and vice versa). CONCLUSIONS: These results demonstrate that even low levels of herbicide exposure can significantly alter plant growth and reproduction, particularly flowering phenology. If field-grown plants respond similarly, then these changes would probably impact plant-plant competitive dynamics and potentially plant-pollinator interactions occurring within plant communities at the agro-ecological interface.


Asunto(s)
Herbicidas , Herbicidas/toxicidad , Dicamba/farmacología , Ecosistema , Reproducción , Plantas , Flores/fisiología , Polinización
10.
Environ Sci Technol ; 56(19): 13644-13653, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150089

RESUMEN

Amines are frequently included in formulations of the herbicides glyphosate, 2,4-D, and dicamba to increase herbicide solubility and reduce herbicide volatilization by producing herbicide-amine salts. Amines, which typically have higher vapor pressures than the corresponding herbicides, could potentially volatilize from these salts and enter the atmosphere, where they may impact atmospheric chemistry, human health, and climate. Amine volatilization from herbicide-amine salts may additionally contribute to volatilization of dicamba and 2,4-D. In this study, we established that amines applied in herbicide-amine salt formulations undergo extensive volatilization. Both dimethylamine and isopropylamine volatilized when aqueous salt solutions were dried to a residue at ∼20 °C, while lower-vapor pressure amines like diglycolamine and n,n-bis-(3-aminopropyl)methylamine did not. However, all four amines volatilized from salt residues at 40-80 °C. Because amine loss typically exceeded herbicide loss, we proposed that neutral amines dominated volatilization and that higher temperatures altered their protonation state and vapor pressure. Due to an estimated 4.0 Gg N/yr applied as amines to major U.S. crops, amine emissions from herbicide-amine salts may be important on regional scales. Further characterization of worldwide herbicide-amine use would enable this contribution to be compared to the 285 Gg N/yr of methylamines emitted globally.


Asunto(s)
Dicamba , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Aminas , Dicamba/química , Dimetilaminas , Herbicidas/química , Humanos , Metilaminas , Sales (Química) , Volatilización
11.
Mol Biol Rep ; 49(12): 11273-11280, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35804213

RESUMEN

BACKGROUND: Many genotoxicity tests allow us to understand the mechanism of damages on genetic material occurring in living organisms against various physical and chemical agents. One of them is the Comet test. The current study aimed to evaluate genotoxic caused by picloram and dicamba to root meristems of Allium cepa utilizing comet assay. METHODS: Two different protocols were used for rooting and auxin/pesticide application. (i) A. cepa bulbs were rooted in MS medium and then treated with Murashige and Skoog (MS) medium (control) and 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba using aseptic tissue culture techniques. (ii) A. cepa bulbs were then rooted in bidistilled water and treated with 0 (control), 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba in distilled water. The A. cepa root tip cells in both treatment groups were examined using comet test to find the possible DNA damaging effects of picloram and dicamba. RESULTS: The results obtained at all the concentrations were statistically compared with their control groups. Almost at all the concentrations of Picloram and dicamba increased comet tail intensity (%) and tail moment in roots treated in MS medium. Two highest concentrations revealed toxic effect. On the other hand, DNA damaging effect of both auxins was only noted on the highest (> 4.02 mg/L) in roots treated in distilled water. CONCLUSIONS: This study approve and confirm genotoxic effects of how growth regulators on plants. These findings give an evidence of DNA damage in A. cepa. Therefore, both picloram and dicamba should only be used in appropriate and recommended concentrations in agriculture to conserve ecosystem and to pose minimum threat to life.


Asunto(s)
Dicamba , Cebollas , Ensayo Cometa , Cebollas/genética , Dicamba/farmacología , Picloram/farmacología , Ecosistema , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Agua
12.
J Environ Manage ; 317: 115303, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35613534

RESUMEN

Expansion of dicamba-resistant crops increased the frequency of off-target movement issues, especially in the midsouthern United States. Six field trials were conducted over two growing seasons with the purpose to determine the contribution of volatilization and physical suspension of particles to the off-target movement of dicamba when applied with glyphosate and imazethapyr - a non-volatile herbicide used as a tracer for physical off-target movement. Applications included dicamba at 560 g ha-1, glyphosate at 1260 g ha-1, and imazethapyr at 105 g ha-1. Applicators include glyphosate with dicamba to increase the spectrum of weed control from these applications; however, this addition increases potential for dicamba volatilization. Following application of the mixture, air samplers were placed in the field to collect dicamba and imazethapyr. Results showed there was at least 50 times more dicamba than imazethapyr detected even though the dicamba:imazethapyr ratio applied was 5.3:1. Dicamba was detected in the treated area and the off-site locations and all intervals of air sampling, ranging from 126 to 5990 ng. No more than 37.5 ng of imazethapyr was detected during the first 24-h after application (HAA) inside the treated area. Imazethapyr was only detected in 9 of the 20 sampling combinations during these experiments, and most of these detections (6) occurred during the first 24 HAA and inside the treated area. While some movement from the suspension of particles occurred based on the detection of imazethapyr in air samples, results show that most dicamba detection was due to the volatilization of the herbicide.


Asunto(s)
Dicamba , Herbicidas , Glicina/análogos & derivados , Ácidos Nicotínicos , Volatilización , Glifosato
13.
J Environ Sci Health B ; 57(11): 865-875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36205187

RESUMEN

Dicamba is a post-emergence herbicide commonly used to control broadleaves in cereal crops. However, a portion of the herbicide might reach soil surface, and many factors could affect its dynamics and effects. The objective of this research was to evaluate the dynamics of dicamba applied to the soil, to the soil and covered with straw and over the straw, in addition, to evaluate the weed control in pre-emergence. Two field experiments at different locations were conducted with dicamba. To quantify dicamba in the soil a LC-MS/MS system was used. In both experiments, rainfall and straw played a key role in dicamba soil dynamics and weed control. Dicamba in the soil was affected by presence of straw and accumulated rainfall after the application. Higher concentrations (254-432 ng g soil-1) in the soil 0-10 cm layers and greater leaching potential were found for the application in the soil compared to over the straw. The maximum concentration of dicamba (101.6-226 ng g soil-1) was found after 10 mm of rainfall for dicamba application over the straw. Around 60-70% of weeds were controlled with concentrations greater than 20 ng/g soil-1, in the presence or absence of straw.


Asunto(s)
Herbicidas , Herbicidas/análisis , Dicamba/farmacología , Zea mays , Control de Malezas , Suelo , Brasil , Cromatografía Liquida , Espectrometría de Masas en Tándem
14.
Proc Natl Acad Sci U S A ; 115(13): E2911-E2920, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531066

RESUMEN

The understanding and mitigation of the appearance of herbicide-resistant weeds have come to the forefront of study in the past decade, as the number of weed species that are resistant to one or more herbicide modes of action is on the increase. Historically, weed resistance to auxin herbicides has been rare, but examples, such as Kochia scoparia L. Schrad (kochia), have appeared, posing a challenge to conventional agricultural practices. Reports of dicamba-resistant kochia populations began in the early 1990s in areas where auxin herbicides were heavily utilized for weed control in corn and wheat cropping systems, and some biotypes are resistant to other auxin herbicides as well. We have further characterized the auxin responses of one previously reported dicamba-resistant biotype isolated from western Nebraska and found that it is additionally cross-resistant to other auxin herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D) and fluroxypyr. We have utilized transcriptome sequencing and comparison to identify a 2-nt base change in this biotype, which results in a glycine to asparagine amino acid change within a highly conserved region of an AUX/indole-3-acetic acid (IAA) protein, KsIAA16. Through yeast two-hybrid analysis, characterization of F2 segregation, and heterologous expression and characterization of the gene in Arabidopsis thaliana, we show that that the single dominant KsIAA16R resistance allele is the causal basis for dicamba resistance in this population. Furthermore, we report the development of a molecular marker to identify this allele in populations and facilitate inheritance studies. We also report that the resistance allele confers a fitness penalty in greenhouse studies.


Asunto(s)
Bassia scoparia/fisiología , Dicamba/farmacología , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacología , Acetatos/farmacología , Arabidopsis/genética , Bassia scoparia/efectos de los fármacos , Bassia scoparia/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Malezas , Piridinas/farmacología
15.
An Acad Bras Cienc ; 93(1): e20181262, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787683

RESUMEN

Due to rising concerns for environmental and human health, many toxic compounds, such as auxin-based herbicides, have been tested in relation their toxicity effect. Especially cyto- and phytotoxic assays have been performed on a number monocot and eudicot plant species. In these approaches the toxicity level of the auxin is compared to a positive control - usually a commercial compound with known effects and chemical similarity to the target compound. However, many target compounds still lack an indication of an adequate positive control. Here, we evaluate the phytotoxic and cytotoxic effect of the auxins 2,4-dichlorophenoxyacetic acid, dicamba, and picloram in order test their potential use as positive controls. All tested auxinic herbicides showed clastogenic and aneugenic effect mechanisms. The results indicate 2,4-dichlorophenoxyacetic acid as the most phyto- and cytotoxic in the discontinuous method in Lactuca sativa L. and Allium cepa L., and also in the continuous method in A. cepa. Thus, we suggest 2,4-dichlorophenoxyacetic acid as a positive control for future mutagenesis studies involving new auxins. For studies with L. sativa in continuous method, we recommend the auxin picloram as positive control as this one was the only one which allowed the development of roots.


Asunto(s)
Herbicidas , Dicamba/toxicidad , Herbicidas/toxicidad , Humanos , Ácidos Indolacéticos , Picloram , Raíces de Plantas
16.
J Environ Manage ; 299: 113602, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454201

RESUMEN

The pyrolysis of excess sludge derived from wastewater treatment plants to prepare biochar can achieve the mass-reduction and harmlessness of solid waste, but it is also necessary to further explore the application prospect of these biochars as a resource for wastewater treatment. In this study, Fe-modified biochar (BC-Fe) was prepared by pyrolysis of excess sludge modified by FeCl3 solution. The molecular structure, elemental valence state, and composition of biochars were comprehensively investigated. The results showed that, compared with the biochar prepared from sludge without modification (BC-blank), the O/C ratio of BC-Fe increased from 0.07 to 0.12, and the (N + O)/C ratio increased from 0.21 to 0.27, indicating increased polarity and weakened aromaticity. The ratio of integrated intensity of the D band and G band in the Raman spectrum increased from 1.34 to 2.40, showing the increased defect structure of the biochar obtained by Fe modification. In the reaction between BC-Fe and dicamba, the removal rate of dicamba reached 92.1% within 180 min, which was far higher than the 17.8% of BC-blank. It was confirmed the adsorption removal dominated and accounted for 70.6% of the dicamba removal by BC-Fe, and the adsorption capacity of biochar could be significantly enhanced by Fe-modification by 5.3 times. Moreover, the persistent free radicals (PFRs) on the surface of biochar was detected by an electron paramagnetic resonance analyzer, and the decline of PFRs signals after the reaction revealed that PFRs participated in the degradation process of dicamba. Through Q-TOF analysis, it could be concluded that dicamba was first converted to 3,6-dichlorosalicylic acid (DCSA) by PFRs reduction and then further transformed to 3,6-dichlorogentisic acid (DCGA). This study provided a reference for the understanding of the removal mechanism of dicamba by Fe-modified biochar and offered an application potential of biochar derived from Fe-containing sludge for the pollution control of dicamba pesticide pollutants.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Dicamba , Contaminantes Químicos del Agua/análisis
17.
J Environ Sci Health B ; 56(7): 634-643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34082656

RESUMEN

The present study aimed to evaluate the Strata-X® sorbent, commonly used in cartridges, through analysis by high-performance liquid chromatography coupled with mass spectrometry. Due to the different physical-chemical characteristics of the compounds, different conditions of chromatography and mass analysis were necessary. The developed methods were validated in terms of selectivity, linear range, linearity (coefficient of determination, r2), the limit of detection (LOD), the limit of quantification (LOQ), accuracy (recovery, %), and precision (RSD, %). The results allowed us to select efficient extraction methods, using methanol acidified to pH 2 with formic acid, to elute the herbicides 2,4-D and dicamba in both sorbent materials. Besides, the Strata-X® sorbent was efficient in the sorption of analytes; thus, we indicate it for potential use in air sampling as an alternative to XAD-2.


Asunto(s)
Dicamba , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Cromatografía Líquida de Alta Presión , Dicamba/análisis , Herbicidas/análisis , Límite de Detección
18.
Environ Sci Technol ; 54(21): 13630-13637, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33054182

RESUMEN

Amine-based formulations are widely used to decrease volatilization of carboxylic acid-containing herbicides including dicamba. Despite our reliance on these formulations, the underlying amine properties that determine their ability to control herbicide volatilization are poorly understood. In this study, we measured dicamba volatilization from solid (BAMPA) on glass as with dimethylamine (DMA), diglycolamine (DGA), and N,N-bis(3-aminopropyl)methylamine (BAPMA) as a function of temperature and amine-to-dicamba ratio, as well as in the presence of glyphosate. In all cases, we found that BAPMA had a greater ability to lessen dicamba volatilization than DMA or DGA. Even when only 1 BAPMA molecule was present for every 10 dicamba molecules, dicamba volatilization was still decreased by 70% relative to the free acid case. The particular ability for BAPMA to control dicamba volatilization could be attributed to several molecular features (i.e., molecular weight, type and number of amine functional groups). Using a set including 5 additional amines, we determined that dicamba volatilization is primarily influenced by the number of functional groups in the amine that can participate in hydrogen bonding. From these results, we propose that ability of an amine to form multiple intermolecular interactions (i.e., hydrogen bonds) in the residue may best predict their potential to prevent herbicide volatilization.


Asunto(s)
Dicamba , Herbicidas , Aminas , Herbicidas/análisis , Enlace de Hidrógeno , Sales (Química) , Volatilización
19.
Molecules ; 25(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796576

RESUMEN

Dicamba is a moderately volatile herbicide used for post-emergent control of broadleaf weeds in corn, soybean, and a number of other crops. With increased use of dicamba due to the release of dicamba-resistant cotton and soybean varieties, growing controversy over the effects of spray drift and volatilization on non-target crops has increased the need for quantifying dicamba collected from water and air sampling. Therefore, this study was designed to evaluate stable isotope-based direct quantification of dicamba from air and water samples using single-quadrupole liquid chromatography-mass spectrometry (LC-MS). The sample preparation protocols developed in this study utilize a simple solid-phase extraction (SPE) protocol for water samples and a single-step concentration protocol for air samples. The LC-MS detection method achieves sensitive detection of dicamba based on selected ion monitoring (SIM) of precursor and fragment ions and relies on the use of an isotopically labeled internal standard (IS) (D3-dicamba), which allows for calculating recoveries and quantification using a relative response factor (RRF). Analyte recoveries of 106-128% from water and 88-124% from air were attained, with limits of detection (LODs) of 0.1 ng mL-1 and 1 ng mL-1, respectively. The LC-MS detection method does not require sample pretreatment such as ion-pairing or derivatization to achieve sensitivity. Moreover, this study reveals matrix effects associated with sorbent resin used in air sample collection and demonstrates how the use of an isotopically labeled IS with RRF-based analysis can account for ion suppression. The LC-MS method is easily transferrable and offers a robust alternative to methods relying on more expensive tandem LC-MS/MS-based options.


Asunto(s)
Cromatografía Liquida/métodos , Dicamba/análisis , Herbicidas/análisis , Marcaje Isotópico/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Agua/química , Aire , Dicamba/aislamiento & purificación , Herbicidas/aislamiento & purificación , Límite de Detección
20.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31209079

RESUMEN

The herbicide dicamba is initially degraded via the tetrahydrofolate (THF)-dependent demethylation system in Rhizorhabdus dicambivorans Ndbn-20. Two THF-dependent dicamba methyltransferase gene clusters, scaffold 50 and scaffold 66, were found in the genome of strain Ndbn-20. Each cluster contains a dicamba methyltransferase gene and three THF metabolism-related genes, namely, metF (coding for 5,10-CH2-THF reductase), folD (coding for 5,10-CH2-THF dehydrogenase-5,10-methenyl-THF cyclohydrolase), and purU (coding for 10-formyl-THF deformylase). In this study, reverse transcription-PCR (RT-PCR) results showed that only genes in scaffold 66, not those in scaffold 50, were transcribed in dicamba-cultured cells. The metF gene of scaffold 66 (metF1) was expressed in Escherichia coli BL21(DE3), and the product was purified as a His6-tagged protein. Purified MetF1 was found to be a monomer and exhibited 5-CH3-THF dehydrogenase activity in vitro The kcat and Km for 5-CH3-THF were 0.23 s-1 and 16.48 µM, respectively. However, 5,10-CH2-THF reductase activity was not detected for MetF1 under the conditions tested. Gene disruption results showed that metF1 is essential for dicamba degradation, whereas folD1 is dispensable.IMPORTANCE There are several THF-dependent methyltransferase genes and THF-metabolic genes in the genome of R. dicambivorans Ndbn-20; however, which genes are involved in dicamba demethylation and the mechanism underlying THF regeneration remain unknown. This study revealed that scaffold 66 is responsible for dicamba demethylation and that MetF1 physiologically catalyzes the dehydrogenation of 5-CH3-THF to 5,10-CH2-THF in the THF-dependent dicamba demethylation system in R. dicambivorans Ndbn-20. Furthermore, the results showed that MetF1 differs from previously characterized MetF in phylogenesis, biochemical properties, and catalytic activity; e.g., MetF1 in vitro did not show 5,10-CH2-THF reductase activity, which is the physiological function of Escherichia coli MetF. This study provides new insights into the mechanism of the THF-dependent methyltransferase system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dicamba/metabolismo , Oxidorreductasas/metabolismo , Sphingomonadaceae/enzimología , Tetrahidrofolatos/metabolismo , Proteínas Bacterianas/genética , Desmetilación , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Oxidorreductasas/genética , Filogenia , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA