RESUMEN
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Humanos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Homólogo 1 de la Proteína MutL/metabolismo , Homólogo 1 de la Proteína MutL/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , DesmetilaciónRESUMEN
The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA. Overexpression of ALKBH2 has been implicated in both tumorigenesis and chemotherapy resistance in some cancers, including glioblastoma and renal cancer rendering it a potential therapeutic target and a diagnostic marker. However, no inhibitor is available against these important DNA repair proteins. Intending to repurpose a drug as an inhibitor of ALKBH2, we performed in silico evaluation of HIV protease inhibitors and identified Ritonavir as an ALKBH2-interacting molecule. Using molecular dynamics simulation, we elucidated the molecular details of Ritonavir-ALKBH2 interaction. The present work highlights that Ritonavir might be used to target the ALKBH2-mediated DNA alkylation repair.
Asunto(s)
Inhibidores de la Proteasa del VIH , Ritonavir , Humanos , Ritonavir/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Simulación de Dinámica Molecular , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismoRESUMEN
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Reparación del ADN , Proteínas de Escherichia coli , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , ADN/química , Reparación del ADN/fisiología , Dioxigenasas/genética , Dioxigenasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Conformación Proteica , Espectrometría de FluorescenciaRESUMEN
AlkB is a bacterial Fe(II)- and 2-oxoglutarate-dependent dioxygenase that repairs a wide range of alkylated nucleobases in DNA and RNA as part of the adaptive response to exogenous nucleic acid-alkylating agents. Although there has been longstanding interest in the structure and specificity of Escherichia coli AlkB and its homologs, difficulties in assaying their repair activities have limited our understanding of their substrate specificities and kinetic mechanisms. Here, we used quantitative kinetic approaches to determine the transient kinetics of recognition and repair of alkylated DNA by AlkB. These experiments revealed that AlkB is a much faster alkylation repair enzyme than previously reported and that it is significantly faster than DNA repair glycosylases that recognize and excise some of the same base lesions. We observed that whereas 1,N6-ethenoadenine can be repaired by AlkB with similar efficiencies in both single- and double-stranded DNA, 1-methyladenine is preferentially repaired in single-stranded DNA. Our results lay the groundwork for future studies of AlkB and its human homologs ALKBH2 and ALKBH3.
Asunto(s)
Enzimas AlkB/química , Reparación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Enzimas AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , ADN/química , ADN/genética , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , HumanosRESUMEN
5-Methylcytosine (5mC) in DNA CpG islands is an important epigenetic biomarker for mammalian gene regulation. It is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) family enzymes, which are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases. In this work, we demonstrate that the epigenetic marker 5mC is modified to 5hmC, 5fC, and 5caC in vitro by another class of α-KG/Fe(II)-dependent proteins-the DNA repair enzymes in the AlkB family, which include ALKBH2, ALKBH3 in huamn and AlkB in Escherichia coli. Theoretical calculations indicate that these enzymes may bind 5mC in the syn-conformation, placing the methyl group comparable to 3-methylcytosine, the prototypic substrate of AlkB. This is the first demonstration of the AlkB proteins to oxidize a methyl group attached to carbon, instead of nitrogen, on a DNA base. These observations suggest a broader role in epigenetics for these DNA repair proteins.
Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Citosina/análogos & derivados , Enzimas AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Animales , Biología Computacional , Islas de CpG , Citosina/metabolismo , ADN/genética , Metilación de ADN , Epigénesis Genética , Humanos , Estructura Molecular , Oxidación-ReducciónRESUMEN
The DNA repair enzyme ALKBH2 is implicated in both tumorigenesis as well as resistance to chemotherapy in certain cancers. It is currently under study as a potential diagnostic marker and has been proposed as a therapeutic target. To date, however, there exist no direct methods for measuring the repair activity of ALKBH2 inâ vitro or in biological samples. Herein, we report a highly specific, fluorogenic probe design based on an oligonucleotide scaffold that reports directly on ALKBH2 activity both inâ vitro and in cell lysates. Importantly, the probe enables the monitoring of cellular regulation of ALKBH2 activity in response to treatment with the chemotherapy drug temozolomide through a simple fluorescence assay, which has only previously been observed through indirect means such as qPCR and western blots. Furthermore, the probe provides a viable high-throughput assay for drug discovery.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/química , Reparación del ADN , Resistencia a Antineoplásicos , Colorantes Fluorescentes/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Alquilación , Antineoplásicos Alquilantes/uso terapéutico , Colorantes Fluorescentes/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Cinética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Espectrometría de Fluorescencia , Temozolomida/uso terapéuticoRESUMEN
The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.
Asunto(s)
Antraquinonas/farmacología , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Oxigenasas de Función Mixta/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Antraquinonas/química , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Daño del ADN , Metilación de ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Metilmetanosulfonato/farmacología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Cancer-associated mutations often lead to perturbed cellular energy metabolism and accumulation of potentially harmful oncometabolites. One example is the chiral molecule 2-hydroxyglutarate (2HG); its two stereoisomers (d- and l-2HG) have been found at abnormally high concentrations in tumors featuring anomalous metabolic pathways. 2HG has been demonstrated to competitively inhibit several α-ketoglutarate (αKG)- and non-heme iron-dependent dioxygenases, including some of the AlkB family DNA repair enzymes, such as ALKBH2 and ALKBH3. However, previous studies have only provided the IC50 values of d-2HG on the enzymes, and the results have not been correlated to physiologically relevant concentrations of 2HG and αKG in cancer cells. In this work, we performed detailed kinetic analyses of DNA repair reactions catalyzed by ALKBH2, ALKBH3, and the bacterial AlkB in the presence of d- and l-2HG in both double- and single-stranded DNA contexts. We determined the kinetic parameters of inhibition, including kcat, KM, and Ki. We also correlated the relative concentrations of 2HG and αKG previously measured in tumor cells with the inhibitory effect of 2HG on the AlkB family enzymes. Both d- and l-2HG significantly inhibited the human DNA repair enzymes ALKBH2 and ALKBH3 at pathologically relevant concentrations (73-88% for d-2HG and 31-58% for l-2HG inhibition). This work provides a new perspective that the elevation of the d- or l-2HG concentration in cancer cells may contribute to an increased mutation rate by inhibiting the DNA repair performed by the AlkB family enzymes and thus exacerbate the genesis and progression of tumors.