RESUMEN
Sox9 plays an essential role in mammalian testis formation. It has been reported that gene expression in the testes is regulated by enhancers. Among them, mXYSRa/Enh13-which is located at far upstream of the transcription start site-plays a critical role, wherein its deletion causes complete male-to-female sex reversal in mice. It has been proposed that the binding sites (BSs) of SOX9 and SRY, the latter of which is the sex determining gene on the Y chromosome, are associated with mXYSRa/Enh13. They function as an enhancer, whereby the sequences are evolutionarily conserved and in vivo binding of SOX9 and SRY to mXYSRa/Enh13 has been demonstrated previously. However, their precise in vivo functions have not been examined to date. To this end, this study generated mice with substitutions on the SOX9 and SRY BSs to reveal their in vivo functions. Homozygous mutants of SOX9 and SRY BS were indistinguishable from XY males, whereas double mutants had small testes, suggesting that these functions are redundant and that there is another functional sequence on mXYSRa/Enh13, since mXYSRa/Enh13 deletion mice are XY females. In addition, the majority of hemizygous mice with substitutions in SOX9 BS and SRY BS were female and male, respectively, suggesting that SOX9 BS contributes more to SRY BS for mXYSRa/Enh13 to function. The additive effect of SOX9 and SRY via these BSs was verified using an in vitro assay. In conclusion, SOX9 BS and SRY BS function redundantly in vivo, and at least one more functional sequence should exist in mXYSRa/Enh13.
Asunto(s)
Disgenesia Gonadal 46 XY , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Femenino , Masculino , Ratones , Sitios de Unión , Mamíferos/metabolismo , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo , Genes sryRESUMEN
Individuals with 46,XX/XY chimerism can display a wide range of characteristics, varying from hermaphroditism to complete male or female, and can display sex chromosome chimerism in multiple tissues, including the gonads. The gonadal tissues of females contain both granulosa and germ cells. However, the specific sex chromosome composition of the granulosa and germ cells in 46,XX/XY chimeric female is currently unknown. Here, we reported a 30-year-old woman with secondary infertility who displayed a 46,XX/46,XY chimerism in the peripheral blood. FISH testing revealed varying degrees of XX/XY chimerism in multiple tissues of the female patient. Subsequently, the patient underwent preimplantation genetic testing (PGT) treatment, and 26 oocytes were retrieved. From the twenty-four biopsied mature oocytes, a total of 23 first polar bodies (PBs) and 10 second PBs were obtained. These PBs and two immature metaphase I (MI) oocytes only displayed X chromosome signals with no presence of the Y, suggesting that all oocytes in this chimeric female were of XX germ cell origin. On the other hand, granulosa cells obtained from individual follicles exhibited varied proportions of XX/XY cell types, and six follicles possessed 100% XX or XY granulosa cells. A total of 24 oocytes were successfully fertilized, and 12 developed into blastocysts, where 5 being XY and 5 were XX. Two blastocysts were transferred with one originating from an oocyte aspirated from a follicle containing 100% XY granulosa cells. This resulted in a twin pregnancy. Subsequent prenatal diagnosis confirmed normal male and female karyotypes. Ultimately, healthy boy-girl twins were delivered at full term. In summary, this 46,XX/XY chimerism with XX germ cells presented complete female, suggesting that germ cells may exert a significant influence on the sexual determination of an individual, which provide valuable insights into the intricate processes associated with sexual development and reproduction.
Asunto(s)
Quimerismo , Células Germinativas , Disgenesia Gonadal 46 XY , Adulto , Femenino , Humanos , Masculino , Embarazo , Gónadas , Oocitos , Cromosoma XRESUMEN
STUDY QUESTION: Do different boys with different types of cryptorchidism exhibit different anogenital distances (AGDs)? SUMMARY ANSWER: Length of AGD seemed to differ in different groups of patients with cryptorchidism. WHAT IS KNOWN ALREADY: AGD, which is used as an indicator of prenatal androgen action, tends to be shorter in boys with cryptorchidism compared to unaffected boys. Shorter AGDs have also been reported in boys with hypospadias, in men with poor semen quality, and in men with testicular cancer. STUDY DESIGN, SIZE, DURATION: A prospective descriptive cohort study was performed using data from consecutively selected boys with cryptorchidism (n = 169) operated in a single center over a period of 3 years (September 2019 to October 2022). PARTICIPANTS/MATERIALS, SETTING, METHODS: AGD was measured in 169 infant boys, at 3 to 26 months of age, during anesthesia with a vernier caliper measuring the distance from the anus to the base of the scrotum (AGDAS) and from the anus to the anterior base of the penis (AGDAP) in two body positions according to the methods by 'The Infant Development and the Environment Study' (TIDES) and 'Cambridge Baby Growth Study', resulting in four mean values per patient (TIDES AGDAS/AP and Cambridge AGDAS/AP). Normal values for AGD by age were set by our hospital Department of Growth and Reproduction based on a large cohort of healthy infant boys (n = 1940). Testicular biopsies were performed at orchidopexy as a clinical routine. The germ cell number (G/T) and type Ad spermatogonia number (AdS/T) per cross-sectional tubule of at least 100 and 250 tubules, respectively were measured and related to normal samples. Blood samples were obtained by venipuncture for measuring serum LH, FSH, and inhibin B. They were analyzed in our hospital Department of Growth and Reproduction where the normal reference was also established. Correlations between the four mean AGD measurements for each boy were evaluated by Spearman rank correlation analyses. The AGD measurement of every boy was transferred to the multiple of the median (MoM) of the normal AGD for age and named MoM AGD. MAIN RESULTS AND THE ROLE OF CHANCE: There were 104 boysoperated for unilateral, and 47 boys operated for bilateral, undescended testes, whereas 18 boys had vanished testis including one boy with bilateral vanished testes. Only 6% of cases with vanished testes had a MoM AGD higher than the normal median compared to 32% with undescended testes (P < 0.05). MoM AGD increased with the age at surgery for boys with vanished testis (Spearman r = 0.44), but not for boys with undescended testes (Spearman r = 0.14). Boys with bilateral cryptorchidism had longer AGDs and more often had hypogonadotropic hypogonadism than boys with unilateral cryptorchidism (P < 0.005) and (P < 0.000001). LIMITATIONS, REASONS FOR CAUTION: Although being the largest published material of AGD measurements of infant boys with cryptorchidism, one limitation of this study covers the quite small number of patients in the different groups, which may decrease the statistical power. Another limitation involves the sparse normal reference material on G/T and AdS/T. Finally, there are currently no longitudinal studies evaluating AGD from birth to adulthood and evaluating childhood AGD in relation to fertility outcome. Our study is hypothesis generating and therefore the interpretation of the results should be regarded as exploratory rather than reaching definite conclusions. WIDER IMPLICATIONS OF THE FINDINGS: The study findings are in agreement with literature as the total included group of boys with cryptorchidism exhibited shorter than normal AGDs. However, new insights were demonstrated. Boys with vanished testis had shorter AGDs compared to unaffected boys and to boys with undescended testes. This finding challenges the current concept of AGD being determined in 'the masculinization programming window' in Week 8 to 14 of gestation. Furthermore, boys with bilateral cryptorchidism had longer AGDs and more often had hypogonadotropic hypogonadism than boys with unilateral cryptorchidism, suggesting that the lack of fetal androgen in hypogonadotropic hypogonadism is not that significant. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used and no competing interests are declared. TRIAL REGISTRATION NUMBER: The trial was not registered in an ICMJE-recognized trial registry.
Asunto(s)
Criptorquidismo , Disgenesia Gonadal 46 XY , Hipogonadismo , Neoplasias Testiculares , Testículo/anomalías , Masculino , Embarazo , Lactante , Femenino , Niño , Humanos , Criptorquidismo/cirugía , Andrógenos , Análisis de Semen , Estudios de Cohortes , Estudios Transversales , Estudios ProspectivosRESUMEN
BACKGROUND: Duplications at the Xp21.2 locus have previously been linked to 46,XY gonadal dysgenesis (GD), which is thought to result from gene dosage effects of NR0B1 (DAX1), but the exact disease mechanism remains unknown. METHODS: Patients with 46,XY GD were analysed by whole genome sequencing. Identified structural variants were confirmed by array CGH and analysed by high-throughput chromosome conformation capture (Hi-C). RESULTS: We identified two unrelated patients: one showing a complex rearrangement upstream of NR0B1 and a second harbouring a 1.2 Mb triplication, including NR0B1. Whole genome sequencing and Hi-C analysis revealed the rewiring of a topological-associated domain (TAD) boundary close to NR0B1 associated with neo-TAD formation and may cause enhancer hijacking and ectopic NR0B1 expression. Modelling of previous Xp21.2 structural variations associated with isolated GD support our hypothesis and predict similar neo-TAD formation as well as TAD fusion. CONCLUSION: Here we present a general mechanism how deletions, duplications or inversions at the NR0B1 locus can lead to partial or complete GD by disrupting the cognate TAD in the vicinity of NR0B1. This model not only allows better diagnosis of GD with copy number variations (CNVs) at Xp21.2, but also gives deeper insight on how spatiotemporal activation of developmental genes can be disrupted by reorganised TADs causing impairment of gonadal development.
Asunto(s)
Variaciones en el Número de Copia de ADN , Disgenesia Gonadal 46 XY , Humanos , Variaciones en el Número de Copia de ADN/genética , Disgenesia Gonadal 46 XY/genética , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Objective: To evaluate the incidence, treatment, and survival outcomes of Swyer syndrome with gonadal non-dysgerminoma malignant germ cell tumor (MGCT-NDG). Methods: A retrospective study was performed on Swyer syndrome patients with MGCT-NDG between January 2011 and December 2022 in Peking Union Medical College Hospital to investigate their characteristics and outcomes. Results: A total of 15 patients (4.9%, 15/307) with Swyer syndrome were identified in 307 MGCT-NDG patients. The average age at diagnosis of MGCT-NDG and Swyer syndrome were (16.8±6.7) and (16.7±6.6) years, respectively. Six cases were preoperatively diagnosed as Swyer syndrome, of which 4 cases received bilateral gonadectomy with or without hysterectomy, while the other 2 cases underwent removal of gonadal tumor and unilateral gonadectomy with hysterectomy, respectively. Of the 9 patients postoperatively diagnosed as Swyer syndrome, unilateral gonadectomy, removal of gonadal tumor, and unilateral gonadectomy with hysterectomy were performed in 6 patients, 2 patients, and 1 patient, respectively. Mixed malignant germ cell tumor (MGCT;10 cases), yolk sac tumor (4 cases), and immature teratoma (1 case) were the pathological subtypes, in the descending order. There were International Federation of Gynecology and Obstetrics (FIGO) stage â in 6 cases, stage â ¡ in 3 cases, stage â ¢ in 5 cases, and stage â £ in 1 case, respectively. Eleven patients received reoperation for residual gonadectomy after a average delay of (7.9±6.2) months, including 8 MGCT-NDG patients and 1 gonadoblastoma patient, no tumor involved was seen in the remaining gonads in the other 2 cases. Ten patients experienced at least one recurrence, with a median event free survival of 9 months (5, 30 months), of which 2 patients received surgery only at the time of initial treatment. All patients with recurrence received surgery and combined with postoperative chemotherapy. After a median follow-up of 25 months (15, 42 months), 10 patients were disease-free, 3 patients died of the tumor, 1 died of side effects of leukemia chemotherapy, and 1 survived with disease. Conclusion: The incidence rate of Swyer syndrome in patients with MGCT-NDG is about 4.9%; timely diagnosis and bilateral gonadectomy should be emphasized to reduce the risk of reoperation and second carcinogenesis in this population.
Asunto(s)
Disgenesia Gonadal 46 XY , Gonadoblastoma , Neoplasias de Células Germinales y Embrionarias , Neoplasias Ováricas , Femenino , Humanos , Estudios Retrospectivos , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/patología , Disgenesia Gonadal 46 XY/cirugía , Gonadoblastoma/patología , Gonadoblastoma/cirugía , Neoplasias de Células Germinales y Embrionarias/cirugía , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/patologíaRESUMEN
OBJECTIVE: To investigate the etiology, diagnosis and treatment of 45,X/46,XY mixed gonadal dysgenesis and the patients' clinical characteristics of conception, pregnancy and delivery, with purpose of improving the treatment and pregnancy management of the patients. METHODS: We retrospectively analyzed the clinical data on a pregnant patient with 45,X/46,XY mixed gonadal dysgenesis. RESULTS: Based on the findings of hypoplasia of secondary sexual characteristics, streak gonads, chromosome karyotype incompatibility with social sex, and chromosome aberration in the gonadal tissue, the patient was diagnosed with 45,X/46,XY mixed gonadal dysgenesis, received oocyte donation and intracytoplasmic sperm injection-embryo transfer (ICSI-ET), and achieved a live birth. CONCLUSION: Female patients with 45,X/46,XY mixed gonadal dysgenesis are infertile, but can achieve pregnancy through oocyte donation. However, the incidence rates of pregnancy complications and abnormal delivery are higher in these patients than in normal females. The perinatal outcomes can be improved by efficient treatment and pregnancy management of the patients.
Asunto(s)
Donación de Oocito , Inyecciones de Esperma Intracitoplasmáticas , Humanos , Femenino , Embarazo , Adulto , Inyecciones de Esperma Intracitoplasmáticas/métodos , Nacimiento Vivo , Disgenesia Gonadal Mixta , Transferencia de Embrión , Estudios Retrospectivos , Resultado del Embarazo , Disgenesia Gonadal 46 XYRESUMEN
Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.
Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Disgenesia Gonadal 46 XY , Femenino , Humanos , Trastorno del Desarrollo Sexual 46,XY/genética , Disgenesia Gonadal 46 XY/genética , Mutación , Pruebas Genéticas , Proteínas de la Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genéticaRESUMEN
46,XY gonadal dysgenesis (GD) is a Disorder/Difference of Sex Development (DSD) that can present with phenotypes ranging from ambiguous genitalia to complete male-to-female sex reversal. Around 50% of 46,XY DSD cases receive a molecular diagnosis. In mice, Fibroblast growth factor 9 (FGF9) is an important component of the male sex-determining pathway. Two FGF9 variants reported to date disrupt testis development in mice, but not in humans. Here, we describe a female patient with 46,XY GD harbouring the rare FGF9 variant (missense mutation), NM_002010.2:c.583G > A;p.(Asp195Asn) (D195N). By biochemical and cell-based approaches, the D195N variant disrupts FGF9 protein homodimerisation and FGF9-heparin-binding, and reduces both Sertoli cell proliferation and Wnt4 repression. XY Fgf9D195N/D195N foetal mice show a transient disruption of testicular cord development, while XY Fgf9D195N/- foetal mice show partial male-to-female gonadal sex reversal. In the general population, the D195N variant occurs at an allele frequency of 2.4 × 10-5 , suggesting an oligogenic basis for the patient's DSD. Exome analysis of the patient reveals several known and novel variants in genes expressed in human foetal Sertoli cells at the time of sex determination. Taken together, our results indicate that disruption of FGF9 homodimerization impairs testis determination in mice and, potentially, also in humans in combination with other variants.
Asunto(s)
Factor 9 de Crecimiento de Fibroblastos , Disgenesia Gonadal 46 XY , Humanos , Masculino , Femenino , Ratones , Animales , Dimerización , Factor 9 de Crecimiento de Fibroblastos/genética , Testículo , Gónadas , Disgenesia Gonadal 46 XY/genéticaRESUMEN
OBJECTIVE: Individuals with 45,X/46,XY or 46,XY gonadal dysgenesis are at increased risk of germ cell malignancies. Therefore, prophylactic bilateral gonadectomy is advised in girls and considered in boys with atypical genitalia for undescended, macroscopically abnormal gonads. However, severely dysgenetic gonads may not contain germ cells rendering gonadectomy unnecessary. Therefore, we investigate if undetectable preoperative serum anti-Müllerian hormone (AMH) and inhibin B can predict the absence of germ cells, (pre)malignant or otherwise. DESIGN, PATIENTS AND MEASUREMENTS: Individuals who had undergone bilateral gonadal biopsy and/or gonadectomy because of suspected gonadal dysgenesis in 1999-2019 were included in this retrospective study if preoperative AMH and/or inhibin B were available. Histological material was reviewed by an experienced pathologist. Haematoxylin and eosin and immunohistochemical stainings for SOX9, OCT4, TSPY and SCF (KITL) were used. RESULTS: Thirteen males and 16 females were included, 20 with 46,XY and 9 with 45,X/46,XY DSD. Three females had dysgerminoma alongside gonadoblastoma; two gonadoblastoma, one germ cell neoplasia in situ (GCNIS) and three males had pre-GCNIS and/or pre-gonadoblastoma. Gonadoblastoma and/or dysgerminoma were present in 3/11 individuals with undetectable AMH and inhibin B, one of whom also had non-(pre)malignant germ cells. Of the other 18, in whom AMH and/or inhibin B were detectable, only one had no germ cells. CONCLUSIONS: Undetectable serum AMH and inhibin B cannot reliably predict the absence of germ cells and germ cell tumours in individuals with 45,X/46,XY or 46,XY gonadal dysgenesis. This information should help in counselling about prophylactic gonadectomy, taking into account both the germ cell cancer risk and potential for gonadal function.
Asunto(s)
Disgerminoma , Disgenesia Gonadal 46 XY , Disgenesia Gonadal , Gonadoblastoma , Neoplasias de Células Germinales y Embrionarias , Neoplasias Ováricas , Masculino , Femenino , Humanos , Gonadoblastoma/genética , Gonadoblastoma/cirugía , Hormona Antimülleriana , Disgerminoma/cirugía , Estudios RetrospectivosRESUMEN
BACKGROUND: Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. METHODS: To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. RESULTS: Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. CONCLUSION: Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.
Asunto(s)
Aciltransferasas , Disgenesia Gonadal 46 XY , Factores de Transcripción SOXE , Desarrollo Sexual , Testículo , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Aciltransferasas/genética , Disgenesia Gonadal 46 XY/genética , Proteínas de la Membrana/genética , Mutación , Fenotipo , Diferenciación Sexual , Desarrollo Sexual/genética , Factores de Transcripción SOXE/genética , Testículo/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Germ cell tumors (GCTs) are associated with pure gonadal dysgenesis or Swyer syndrome. Swyer syndrome usually presents with primary amenorrhea, streak ovaries, and mixed GCT. However, our patient presented with secondary amenorrhea, normal female external genitalia, and a mixed GCT. Constitutional karyotype was suggestive of 46,XY. Management comprised chemotherapy, followed by surgery. Histopathology was suggestive of dysgerminoma complicating a gonadoblastoma. The purpose of reporting this case is its rarity and the importance of diagnosing an XY karyotype, as the incidence of GCTs is higher in these patients.
Asunto(s)
Disgerminoma , Disgenesia Gonadal 46 XY , Gonadoblastoma , Neoplasias de Células Germinales y Embrionarias , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/patología , Amenorrea/complicaciones , Disgerminoma/diagnóstico , Disgerminoma/terapia , Disgerminoma/patología , Gonadoblastoma/complicaciones , Gonadoblastoma/diagnóstico , Gonadoblastoma/patología , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Disgenesia Gonadal 46 XY/complicaciones , Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias de Células Germinales y Embrionarias/complicacionesRESUMEN
BACKGROUND: Gonadal dysgenesis with minifascicular neuropathy (GDMN) is a rare autosomal recessive condition associated with biallelic DHH pathogenic variants. In 46, XY individuals, this disorder is characterized by an association of minifascicular neuropathy (MFN) and gonadal dysgenesis, while in 46, XX subjects only the neuropathic phenotype is present. Very few patients with GDMN have been reported so far. We describe four patients with MFN due to a novel DHH likely pathogenic homozygous variant and the results of nerve ultrasound assessment. METHODS: This retrospective observational study included 4 individuals from 2 unrelated Brazilian families evaluated for severe peripheral neuropathy. Genetic diagnosis was performed with a peripheral neuropathy next-generation sequencing (NGS) panel based on whole exome sequencing focused analysis that included a control SRY probe to confirm genetic sex. Clinical characterization, nerve conduction velocity studies, and high-resolution ultrasound nerve evaluation were performed in all subjects. RESULTS: Molecular analysis disclosed in all subjects the homozygous DHH variant p.(Leu335Pro). Patients had a striking phenotype, with marked trophic changes of extremities, sensory ataxia, and distal anesthesia due to a sensory-motor demyelinating polyneuropathy. One 46, XY phenotypically female individual had gonadal dysgenesis. High-resolution nerve ultrasound showed typical minifascicular formation and increased nerve area in at least one of the nerves assessed in all patients. CONCLUSION: Gonadal dysgenesis with minifascicular neuropathy is a severe autosomal recessive neuropathy characterized by trophic alterations in limbs, sensory ataxia, and distal anesthesia. Nerve ultrasound studies are very suggestive of this condition and may help to avoid invasive nerve biopsies.
Asunto(s)
Disgenesia Gonadal 46 XY , Disgenesia Gonadal , Enfermedades del Sistema Nervioso Periférico , Síndrome de Turner , Humanos , Femenino , Enfermedades del Sistema Nervioso Periférico/diagnóstico por imagen , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/complicaciones , Disgenesia Gonadal/complicaciones , Disgenesia Gonadal 46 XY/complicaciones , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Síndrome de Turner/complicacionesRESUMEN
Swyer syndrome is where an individual has the karyotype of a typical male yet is phenotypically a female. The lack of a (functional) SRY gene located on the Y-chromosome is implicated in some cases of the Swyer syndrome, although many Swyer individuals with an apparently fully functional SRY gene have also been documented. The present study undertook whole genome sequence analyses of eight cattle with suspected Swyer syndrome and compared their genome to that of both a control male and female. Sequence analyses coupled with female phenotypes confirmed that all eight individuals had the 60,XY sex reversal Swyer syndrome. Seven of the eight Swyer syndrome individuals had a deletion on the Y chromosome encompassing the SRY gene (i.e., SRY-). The eighth individual had no obvious mutation in the SRY gene (SRY+) or indeed in any reported gene associated with sex reversal in mammals; a necropsy was performed on this individual. No testicles were detected during the necropsy. Histological examination of the reproductive tract revealed an immature uterine body and horns with inactive glandular tissue of normal histological appearance; both gonads were elongated, a characteristic of most reported cases of Swyer in mammals. The flanking sequence of 11 single nucleotide polymorphisms within 10 kb of the SRY gene are provided to help diagnose some cases of Swyer syndrome. These single nucleotide polymorphisms will not, however, detect all cases of Swyer syndrome since, as evidenced from the present study (and other studies), some individuals with the Swyer condition still contain the SRY gene (i.e., SRY+).
Asunto(s)
Enfermedades de los Bovinos , Disgenesia Gonadal 46 XY , Masculino , Bovinos/genética , Femenino , Animales , Disgenesia Gonadal 46 XY/genética , Mutación , Genes sry , Cromosoma Y/genética , Testículo , Proteína de la Región Y Determinante del Sexo/genética , Mamíferos/genética , Enfermedades de los Bovinos/genéticaRESUMEN
Homozygous variants in PPP2R3C have been reported to cause a syndromic 46,XY complete gonadal dysgenesis phenotype with extragonadal manifestations (GDRM, MIM# 618419) in patients from four unrelated families, whereas heterozygous variants have been linked to reduced fertility with teratozoospermia (SPGF36, MIM# 618420) in male carriers. We present eight patients from four unrelated families of Turkish and Indian descent with three different germline homozygous PPP2R3C variants including a novel in-frame duplication (c.639_647dupTTTCTACTC, p.Ser216_Tyr218dup). All patients exhibit recognizable facial dysmorphisms allowing gestalt diagnosis. In two 46,XX patients with hypergonadotropic hypogonadism and nonvisualized gonads, primary amenorrhea along with absence of secondary sexual characteristics and/or unique facial gestalt led to the diagnosis. 46,XY affected individuals displayed a spectrum of external genital phenotypes from ambiguous genitalia to complete female. We expand the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to both XY and XX gonadal dysgenesis. Our findings supported neither ocular nor muscular involvement as major criteria of the syndrome. We also did not encounter infertility problems in the carriers. Since both XX and XY individuals were affected, we hypothesize that PPP2R3C is essential in the early signaling cascades controlling sex determination in humans.
Asunto(s)
Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Mutación , Fenotipo , Proteína Fosfatasa 2/genética , Anomalías Múltiples/genética , Consanguinidad , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Previous studies have suggested that sexual function may be compromised in women born with differences of sex development (DSD) or early loss of gonadal function. AIM: To describe sexual function and sexual wellbeing in women with complete androgen insensitivity syndrome (CAIS), complete gonadal dysgenesis (GD) and premature ovarian insufficiency (POI) in relation to gynecological measures and in comparison with unaffected women. METHODS: A cross sectional study including 20 women with CAIS, 8 women with 46,XY GD, 8 women with 46,XX GD, 21 women with POI, and 62 population-derived controls. Study participants underwent gynecological examination for anatomical measurements and evaluation of tactile sensitivity. They responded to the validated Sexual Activity Log (SAL), Profile of Female Sexual Function (PFSF), and the Personal Distress Scale (PDS). RESULTS: The women with CAIS, XY GD, XX GD and POI showed overall satisfying sexual function in comparison to unaffected age-matched population female controls with a median of 1 to 2 satisfying sexual episodes per week among both the patients and the controls depending on available partner. Women with CAIS had shorter vagina and smaller clitoris and women with XY GD had a significantly shallower vagina in comparison to controls. Clitoral width was also significantly smaller among women with XX GD compared to controls. However, results showed overall good genital touch sensitivity with no significant differences between groups. CLINICAL IMPLICATIONS: Women with DSD or POI can be informed on overall satisfactory sexual function and normal genital touch sensitivity. STRENGTHS & LIMITATIONS: The strength is the use of age-matched population-based controls to these rare conditions of DSD and POI. Limitations are the nonresponder rate of recruited controls, as well as the small groups of women with DSD. CONCLUSION: Women with differences of sex development or early loss of gonadal function show overall good sexual well-being, however clinicians have to make efforts to optimize caretaking and treatment to ensure good sexual quality of life for all patients. Engberg H, Strandqvist A, Berg E, et al., Sexual Function in Women With Differences of Sex Development or Premature Loss of Gonadal Function. J Sex Med 2022;19:249-256.
Asunto(s)
Síndrome de Resistencia Androgénica , Disgenesia Gonadal 46 XY , Estudios Transversales , Femenino , Humanos , Masculino , Calidad de Vida , Desarrollo SexualRESUMEN
BACKGROUND: Permanent progression of paternal age and development of reproductive medicine lead to increase in number of children conceived with assisted reproductive techniques (ART). Although it is uncertain if ARTs have direct influence on offspring health, advanced paternal age, associated comorbidities and reduced fertility possess significant risks of genetic disorders to the offspring. With a broad implementation of a non-invasive prenatal testing (NIPT), more cases of genetic disorders, including sex discordance are revealed. Among biological causes of sex discordance are disorders of sexual development, majority of which are associated with the SRY gene. CASE PRESENTATION: We report a case of a non-invasive prenatal testing and ultrasound sex discordance in a 46,XY karyotype female fetus with an SRY pathogenic variant, who was conceived through an intracytoplasmic sperm injection (ICSI) due to severe oligozoospermia of the father. Advanced mean age of ICSI patients is associated with risk of de novo mutations and monogenic disorders in the offspring. Additionally, ICSI patients have higher risk to harbour infertility-predisposing mutations, including mutations in the SRY gene. These familial and de novo genetic factors predispose ICSI-conceived children to congenital malformations and might negatively affect reproductive health of ICSI-patients' offspring. CONCLUSIONS: Oligozoospermic patients planning assisted reproduction are warranted to undergo genetic counselling and testing for possible inherited and mosaic mutations, and risk factors for de novo mutations.
Asunto(s)
Enfermedades Fetales/etiología , Enfermedades Fetales/genética , Genes sry , Disgenesia Gonadal 46 XY/etiología , Disgenesia Gonadal 46 XY/genética , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Femenino , Humanos , Cariotipificación , Pruebas Prenatales no Invasivas , Padres , Factores de RiesgoRESUMEN
A region of 160 kb at Xp21.2 has been defined as dosage-sensitive sex reversal (DSS) and includes the NR0B1 gene, considered to be the candidate gene involved in XY gonadal dysgenesis if overexpressed. We describe a girl with 46,XY partial gonadal dysgenesis carrying a 297 kb duplication at Xp21.2 upstream of NR0B1 initially detected by chromosomal microarray analysis. Fine mapping of the breakpoints by whole-genome sequencing showed a tandem duplication of TASL (CXorf21), GK and partially TAB3, upstream of NR0B1. This is the first description of an Xp21.2 duplication upstream of NR0B1 associated with 46,XY partial gonadal dysgenesis.
Asunto(s)
Disgenesia Gonadal 46 XY , Femenino , Humanos , Receptor Nuclear Huérfano DAX-1/genética , Disgenesia Gonadal 46 XY/genéticaRESUMEN
Male reproductive functions are governed by hypothalamic pituitary testicular axis. If any component of this axis malfunctions, then hypogonadism will develop which is characterized by ill-defined secondary sexual features and low serum testosterone. The common patterns seen are primary and secondary testicular failure in the young; and late onset hypogonadism in the elderly. All such cases can be virilized and managed by androgen supplementation. Spermatogenesis can be induced by use of appropriate gonadotropins in selected cases. The aim of the study was to find out the pattern, management and outcome of male hypogonadism. MATERIAL: It was a prospective questionnaire based observational study, carried out on infertile hypogonadic males, attending medicine outdoor at medical college hospital from January 2015 to December 2020. There were 50 males with hypogonadic features, cases of late onset of hypogonadism were excluded. Sexual maturity rating, semen analysis, serum testosterone and FSH level were estimated in all patients at baseline and at 6 months duration of treatment. Testicular biopsy, Karyotyping and MRI brain were performed in selected cases. Azoospermic patients having hypogonadotropic hypogonadism were treated with long-acting testosterones and gonadotropins. OBSERVATION: The study subjects were infertile azoospermic males. On the basis of serum FSH and testosterone levels, they were classified into two groups. Group A (n=42) cases were hypergonadotropic hypogonadism or primary testicular failure; of these 32 were Klinefelter syndrome (XXY), 7 chronic orchitis and 3 empty scrotal syndrome including one case of anorchia. These patients also developed other systemic illnesses in addition to hypogonadism. Group B (n=8) hypogonadotropic hypogonadism or secondary testicular failure; of these 2 were Kallman syndrome and the rest were idiopathic. After testosterone replacement all patients were virilized and there was marked improvement in libido and androgenization. CONCLUSION: The study brings out that primary testicular failure is more common than secondary testicular failure. Both pattern of hypogonadism should receive lifelong androgen replacement therapy; otherwise, they will be a basket of multiple systemic disorders. Presently testosterone undecanoate once in every three months is the agent of choice.
Asunto(s)
Azoospermia , Hipogonadismo , Anciano , Femenino , Hormona Folículo Estimulante , Disgenesia Gonadal 46 XY , Gonadotropinas , Humanos , Hipogonadismo/tratamiento farmacológico , India/epidemiología , Masculino , Estudios Prospectivos , Testículo/anomalías , Testosterona/uso terapéutico , Resultado del TratamientoRESUMEN
Background: We report the clinical case of female patient with 46,XY difference of sexual development (DSD) and discuss the challenges in the differential diagnosis between complete gonadal dysgenesis (also called Swyer syndrome) and complete androgen insensitivity syndrome. Case Presentation: The patient's with primary amenorrhea gynaecological examination and magnetic resonance imaging (MRI) revealed the absence of the uterus and a very short vagina. Two sclerotic structures, similar to ovaries, were recognised bilaterally in the iliac regions. Hormonal assay tests revealed hypergonadotropic hypogonadism and the testosterone level was above normal. The karyotype was 46,XY and a diagnosis of Swyer syndrome was made. At the age of 41, the patient underwent a gynaecological review and after evaluating her tests and medical history, the previous diagnosis was questioned. Therefore, a molecular analysis of sex-determining region Y (SRY) and androgen receptor (AR) genes was made and the results instead led to a definite diagnosis of complete androgen insensitivity syndrome. Conclusions: The presented case illustrates that differentiating between complete gonadal dysgenesis and complete androgen insensitivity can be challenging. A well-established diagnosis is crucial because the risk of malignancy is different in those two syndromes, as well as the timing and importance of gonadectomy.
Asunto(s)
Síndrome de Resistencia Androgénica , Disgenesia Gonadal 46 XY , Humanos , Masculino , Femenino , Síndrome de Resistencia Androgénica/diagnóstico , Síndrome de Resistencia Androgénica/genética , Ovario , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Útero , Desarrollo SexualRESUMEN
Missense mutations in the gene, MAP3K1, are a common cause of 46,XY gonadal dysgenesis, accounting for 15-20% of cases [Ostrer, 2014, Disorders of sex development (DSDs): an update. J. Clin. Endocrinol. Metab., 99, 1503-1509]. Functional studies demonstrated that all of these mutations cause a protein gain-of-function that alters co-factor binding and increases phosphorylation of the downstream MAP kinase pathway targets, MAPK11, MAP3K and MAPK1. This dysregulation of the MAP kinase pathway results in increased CTNNB1, increased expression of WNT4 and FOXL2 and decreased expression of SRY and SOX9. Unique and recurrent pathogenic mutations cluster in three semi-contiguous domains outside the kinase region of the protein, a newly identified N-terminal domain that shares homology with the Guanine Exchange Factor (residues Met164 to Glu231), a Plant HomeoDomain (residues Met442 to Trp495) and an ARMadillo repeat domain (residues Met566 to Glu862). Despite the presence of the mutation clusters and clinical data, there exists a dearth of mechanistic insights behind the development imbalance. In this paper, we use structural modeling and functional data of these mutations to understand alterations of the MAP3K1 protein and the effects on protein folding, binding and downstream target phosphorylation. We show that these mutations have differential effects on protein binding depending on the domains in which they occur. These mutations increase the binding of the RHOA, MAP3K4 and FRAT1 proteins and generally decrease the binding of RAC1. Thus, pathologies in MAP3K1 disrupt the balance between the pro-kinase activities of the RHOA and MAP3K4 binding partners and the inhibitory activity of RAC1.