Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Intervalo de año de publicación
1.
Hum Mol Genet ; 32(4): 551-566, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36048859

RESUMEN

Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.


Asunto(s)
Distrofia Miotónica , Condicionamiento Físico Animal , Animales , Femenino , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Ribonucleótidos/farmacología
2.
Biol Res ; 57(1): 29, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760841

RESUMEN

BACKGROUND: We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS: We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS: For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.


Asunto(s)
Distrofia Miotónica , Ácido Oléico , Ácido Oléico/farmacología , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/metabolismo , Humanos , Diferenciación Celular/efectos de los fármacos , MicroARNs/metabolismo , Autofagia/efectos de los fármacos , Línea Celular , Proteínas de Unión al ARN/metabolismo
3.
Crit Rev Biochem Mol Biol ; 56(1): 31-53, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33172304

RESUMEN

Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50-3,500 in DMPK; DM2, CCTG75-11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50-200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40-55 in AR), Huntington's disease (HD, CAG36-121 in HTT), C9ORF72- amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders - bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation - which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxia/genética , Síndrome del Cromosoma X Frágil/genética , Demencia Frontotemporal/genética , Enfermedad de Huntington/genética , Atrofia Muscular Espinal/genética , Distrofia Miotónica/genética , Procesamiento Postranscripcional del ARN/genética , Temblor/genética , Expansión de Repetición de Trinucleótido/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Ataxia/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Demencia Frontotemporal/tratamiento farmacológico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Atrofia Muscular Espinal/tratamiento farmacológico , Distrofia Miotónica/tratamiento farmacológico , Neuronas/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/genética , Temblor/tratamiento farmacológico
4.
Nanomedicine ; 47: 102623, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309185

RESUMEN

In a context of drug repurposing, pentamidine (PTM), an FDA-approved antiparasitic drug, has been proposed to reverse the splicing defects associated in myotonic dystrophy type 1 (DM1). However, clinical use of PTM is hinder by substantial toxicity, leading to find alternative delivery strategies. In this work we proposed hyaluronic acid-based nanoparticles as a novel encapsulation strategy to efficiently deliver PTM to skeletal muscles cells. In vitro studies on C2C12 myoblasts and myotubes showed an efficient nanoparticles' internalization with minimal toxicity. More interestingly, our findings evidenced for the first time the endosomal escape of hyaluronic acid-based nanocarriers. Ex vivo studies showed an efficient nanoparticles' internalization within skeletal muscle fibers. Finally, the therapeutic efficacy of PTM-loaded nanosystems to reduce the number of nuclear foci has been demonstrated in a novel DM1 in vitro model. So far, current data demonstrated the potency of hyaluronic acid-based nanosystems as efficient nanocarrier for delivering PTM into skeletal muscle and mitigate DM1 pathology.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Pentamidina , Ácido Hialurónico , Músculo Esquelético
5.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445828

RESUMEN

Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3ß-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3ß-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3ß-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3/genética , Músculos/metabolismo , ARN/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769018

RESUMEN

Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.


Asunto(s)
Distrofias Musculares , Distrofia Miotónica , Ratones , Animales , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distribución Tisular , Distrofias Musculares/metabolismo , Oligonucleótidos Antisentido/farmacología , Miocardio/metabolismo
7.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372969

RESUMEN

Myotonic dystrophy type 1 (DM1) is a complex rare disorder characterized by progressive muscle dysfunction, involving weakness, myotonia, and wasting, but also exhibiting additional clinical signs in multiple organs and systems. Central dysregulation, caused by an expansion of a CTG trinucleotide repeat in the DMPK gene's 3' UTR, has led to exploring various therapeutic approaches in recent years, a few of which are currently under clinical trial. However, no effective disease-modifying treatments are available yet. In this study, we demonstrate that treatments with boldine, a natural alkaloid identified in a large-scale Drosophila-based pharmacological screening, was able to modify disease phenotypes in several DM1 models. The most significant effects include consistent reduction in nuclear RNA foci, a dynamic molecular hallmark of the disease, and noteworthy anti-myotonic activity. These results position boldine as an attractive new candidate for therapy development in DM1.


Asunto(s)
Distrofia Miotónica , Animales , Ratones , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Drosophila/genética , Fenotipo , Línea Celular , Expansión de Repetición de Trinucleótido
8.
J Physiol ; 600(14): 3249-3264, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35695045

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.


Asunto(s)
Distrofia Miotónica , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ratones , Músculo Esquelético/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido
9.
Gene Ther ; 29(12): 698-709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35075265

RESUMEN

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Miotónica , Adulto , Humanos , Animales , Ratones , Distrofia Miotónica/terapia , Distrofia Miotónica/tratamiento farmacológico , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Expansión de Repetición de Trinucleótido , Proteínas de Unión al ARN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Oligonucleótidos/uso terapéutico , Encéfalo/metabolismo
10.
Chembiochem ; 23(17): e202200260, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790065

RESUMEN

Small molecule targeting of DNA and RNA sequences has come into focus as a therapeutic strategy for diseases such as myotonic dystrophy type 1 (DM1), a trinucleotide repeat disease characterized by RNA gain-of-function. Herein, we report a novel template-selected, reversible assembly of therapeutic agents in situ via aldehyde-amine condensation. Rationally designed small molecule targeting agents functionalized with either an aldehyde or an amine were synthesized and screened against the target nucleic acid sequence. The assembly of fragments was confirmed by MALDI-MS in the presence of DM1-relevant nucleic acid sequences. The resulting hit combinations of aldehyde and amine inhibited the formation of r(CUG)exp in vitro in a cooperative manner at low micromolar levels and rescued mis-splicing defects in DM1 model cells. This reversible template-selected assembly is a promising approach to achieve cell permeable and multivalent targeting via in situ synthesis and could be applied to other nucleic acid targets.


Asunto(s)
Distrofia Miotónica , Aldehídos , Aminas , Secuencia de Bases , ADN , Humanos , Ligandos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN/genética , Expansión de Repetición de Trinucleótido
11.
J Transl Med ; 20(1): 588, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510245

RESUMEN

BACKGROUND: Myotonic dystrophy type 1 (DM1), one of the most common forms of adult-onset muscular dystrophy, is caused by abnormally expanded CTG repeats in the 3' untranslated region of the DMPK gene. The CUG repeats transcribed from the expanded CTG repeats sequestrate a splicing factor, MBNL1, causing the clinical symptoms in DM1. Nowadays, only symptomatic treatments are available for DM1, and no rational therapy is available. Recently, upregulation of MBNL1 expression has been found to be one of the promising therapies for DM1. METHODS: All experiments were conducted in the C2C12 myoblasts and HSALR mice, a DM1 mouse model. Real-time PCR and western blot were used to detect the mRNA and protein level, respectively. The rotarod exercise, grip strength and hanging time were used to evaluate the muscle strength of mice. RESULTS: In this study, we demonstrated that calcitriol, an active form of vitamin D3, increased MBNL1 in C2C12 mouse myoblasts as well as in HSALR mice model for DM1. In HSALR mice model, calcitriol improved muscle strength, and corrected aberrant splicing in skeletal muscle. Besides, calcitriol reduced the number of central nuclei, and improved muscle histopathology in HSALR mice. In addition, we identified that calcitriol upregulated MBNL1 expression via activating the promoter of Mbnl1 in C2C12 myogenic cells. CONCLUSION: Our study suggests that calcitriol is a potential pharmacological strategy for DM1 that enhances MBNL1 expression.


Asunto(s)
Distrofia Miotónica , Ratones , Animales , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Calcitriol/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mioblastos/metabolismo , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Empalme Alternativo , Proteínas de Unión al ADN/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(18): 8709-8714, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975744

RESUMEN

Developing highly active, multivalent ligands as therapeutic agents is challenging because of delivery issues, limited cell permeability, and toxicity. Here, we report intrinsically cell-penetrating multivalent ligands that target the trinucleotide repeat DNA and RNA in myotonic dystrophy type 1 (DM1), interrupting the disease progression in two ways. The oligomeric ligands are designed based on the repetitive structure of the target with recognition moieties alternating with bisamidinium groove binders to provide an amphiphilic and polycationic structure, mimicking cell-penetrating peptides. Multiple biological studies suggested the success of our multivalency strategy. The designed oligomers maintained cell permeability and exhibited no apparent toxicity both in cells and in mice at working concentrations. Furthermore, the oligomers showed important activities in DM1 cells and in a DM1 liver mouse model, reducing or eliminating prominent DM1 features. Phenotypic recovery of the climbing defect in adult DM1 Drosophila was also observed. This design strategy should be applicable to other repeat expansion diseases and more generally to DNA/RNA-targeted therapeutics.


Asunto(s)
Distrofia Miotónica/tratamiento farmacológico , Proteínas de Unión al ARN/metabolismo , Repeticiones de Trinucleótidos , Animales , ADN , Proteínas de Unión al ADN , Drosophila melanogaster , Células HeLa , Humanos , Ligandos , Hígado/metabolismo , Ratones , Mioblastos/fisiología , Distrofia Miotónica/genética , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/química
13.
Proc Natl Acad Sci U S A ; 116(50): 25203-25213, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754023

RESUMEN

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.


Asunto(s)
Cloroquina/administración & dosificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Femenino , Humanos , Masculino , Ratones , Músculos/efectos de los fármacos , Músculos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Proteínas Nucleares/genética , Fenotipo , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/genética
14.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233257

RESUMEN

Current studies concerning myotonic dystrophy type 1 (DM1) are in the process of transitioning from molecular investigations to preclinical and clinical trials [...].


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética
15.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362145

RESUMEN

Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.


Asunto(s)
Distrofia Miotónica , Ratones , Humanos , Animales , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Ratones Transgénicos , Oligonucleótidos/uso terapéutico , Regiones no Traducidas 3' , Expansión de Repetición de Trinucleótido
16.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563013

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.


Asunto(s)
Distrofia Miotónica , Edición Génica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Expansión de Repetición de Trinucleótido/genética
17.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270043

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.


Asunto(s)
Metformina , Distrofia Miotónica , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Debilidad Muscular , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Fenotipo
18.
Biochemistry ; 59(37): 3463-3472, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32856901

RESUMEN

There are few methods available for the rapid discovery of multitarget drugs. Herein, we describe the template-assisted, target-guided discovery of small molecules that recognize d(CTG) in the expanded d(CTG·CAG) sequence and its r(CUG) transcript that cause myotonic dystrophy type 1. A positive cross-selection was performed using a small library of 30 monomeric alkyne- and azide-containing ligands capable of producing >5000 possible di- and trimeric click products. The monomers were incubated with d(CTG)16 or r(CUG)16 under physiological conditions, and both sequences showed selectivity in the proximity-accelerated azide-alkyne [3+2] cycloaddition click reaction. The limited number of click products formed in both selections and the even smaller number of common products suggests that this method is a useful tool for the discovery of single-target and multitarget lead therapeutic agents.


Asunto(s)
ADN/antagonistas & inhibidores , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Células Cultivadas , ADN/genética , ADN/metabolismo , Humanos , Distrofia Miotónica/patología , ARN/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética
19.
Hum Mol Genet ; 27(19): 3361-3376, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982462

RESUMEN

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase mRNAs. Mutant mRNAs accumulate in the nucleus of affected cells and misregulate RNA-binding proteins, thereby promoting characteristic missplicing events. However, little is known about the signaling pathways that may be affected in DM1. Here, we investigated the status of activated protein kinase (AMPK) signaling in DM1 skeletal muscle and found that the AMPK pathway is markedly repressed in a DM1 mouse model (human skeletal actin-long repeat, HSALR) and patient-derived DM1 myoblasts. Chronic pharmacological activation of AMPK signaling in DM1 mice with 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) has multiple beneficial effects on the DM1 phenotype. Indeed, a 6-week AICAR treatment of DM1 mice promoted expression of a slower, more oxidative phenotype, improved muscle histology and corrected several events associated with RNA toxicity. Importantly, AICAR also had a dose-dependent positive effect on the spliceopathy in patient-derived DM1 myoblasts. In separate experiments, we also show that chronic treatment of DM1 mice with resveratrol as well as voluntary wheel running also rescued missplicing events in muscle. Collectively, our findings demonstrate the therapeutic potential of chronic AMPK stimulation both physiologically and pharmacologically for DM1 patients.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Distrofia Miotónica/tratamiento farmacológico , Proteínas Quinasas/genética , Proteínas de Unión al ARN/genética , Ribonucleótidos/administración & dosificación , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/administración & dosificación , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Actividad Motora/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Mioblastos/efectos de los fármacos , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Resveratrol/administración & dosificación , Expansión de Repetición de Trinucleótido/genética
20.
Chemistry ; 26(63): 14305-14309, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-32449537

RESUMEN

Expanded CUG repeat RNA in the dystrophia myotonia protein kinase (DMPK) gene causes myotonic dystrophy type 1 (DM1) and sequesters RNA processing proteins, such as the splicing factor muscleblind-like 1 protein (MBNL1). Sequestration of splicing factors results in the mis-splicing of some pre-mRNAs. Small molecules that rescue the mis-splicing in the DM1 cells have drawn attention as potential drugs to treat DM1. Herein we report a new molecule JM642 consisted of two 1,3-diaminoisoquinoline chromophores having an auxiliary aromatic unit at the C5 position. JM642 alternates the splicing pattern of the pre-mRNA of the Ldb3 gene in the DM1 cell model and Clcn1 and Atp2a1 genes in the DM1 mouse model. In vitro binding analysis by surface plasmon resonance (SPR) assay to the r(CUG) repeat and disruption of ribonuclear foci in the DM1 cell model suggested the binding of JM642 to the expanded r(CUG) repeat in vivo, eventually rescue the mis-splicing.


Asunto(s)
Distrofia Miotónica , Quinolinas , Empalme del ARN , Animales , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Dimerización , Ratones , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Quinolinas/química , Quinolinas/farmacología , ARN/metabolismo , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA