Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.424
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genes Dev ; 34(1-2): 37-52, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31831628

RESUMEN

In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Conducta Alimentaria/fisiología , Animales , Encéfalo/fisiología , Proteínas de Unión al ADN/metabolismo , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Drosophila/enzimología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Levodopa/farmacología , Monoyodotirosina/farmacología , Transducción de Señal , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/genética , Regulación hacia Arriba
2.
Proc Natl Acad Sci U S A ; 121(22): e2316149121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768342

RESUMEN

Speech impediments are a prominent yet understudied symptom of Parkinson's disease (PD). While the subthalamic nucleus (STN) is an established clinical target for treating motor symptoms, these interventions can lead to further worsening of speech. The interplay between dopaminergic medication, STN circuitry, and their downstream effects on speech in PD is not yet fully understood. Here, we investigate the effect of dopaminergic medication on STN circuitry and probe its association with speech and cognitive functions in PD patients. We found that changes in intrinsic functional connectivity of the STN were associated with alterations in speech functions in PD. Interestingly, this relationship was characterized by altered functional connectivity of the dorsolateral and ventromedial subdivisions of the STN with the language network. Crucially, medication-induced changes in functional connectivity between the STN's dorsolateral subdivision and key regions in the language network, including the left inferior frontal cortex and the left superior temporal gyrus, correlated with alterations on a standardized neuropsychological test requiring oral responses. This relation was not observed in the written version of the same test. Furthermore, changes in functional connectivity between STN and language regions predicted the medication's downstream effects on speech-related cognitive performance. These findings reveal a previously unidentified brain mechanism through which dopaminergic medication influences speech function in PD. Our study sheds light into the subcortical-cortical circuit mechanisms underlying impaired speech control in PD. The insights gained here could inform treatment strategies aimed at mitigating speech deficits in PD and enhancing the quality of life for affected individuals.


Asunto(s)
Lenguaje , Enfermedad de Parkinson , Habla , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/efectos de los fármacos , Masculino , Habla/fisiología , Habla/efectos de los fármacos , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Dopamina/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Cognición/efectos de los fármacos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico
3.
N Engl J Med ; 387(22): 2045-2055, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449420

RESUMEN

BACKGROUND: Iron content is increased in the substantia nigra of persons with Parkinson's disease and may contribute to the pathophysiology of the disorder. Early research suggests that the iron chelator deferiprone can reduce nigrostriatal iron content in persons with Parkinson's disease, but its effects on disease progression are unclear. METHODS: We conducted a multicenter, phase 2, randomized, double-blind trial involving participants with newly diagnosed Parkinson's disease who had never received levodopa. Participants were assigned (in a 1:1 ratio) to receive oral deferiprone at a dose of 15 mg per kilogram of body weight twice daily or matched placebo for 36 weeks. Dopaminergic therapy was withheld unless deemed necessary for symptom control. The primary outcome was the change in the total score on the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS; range, 0 to 260, with higher scores indicating more severe impairment) at 36 weeks. Secondary and exploratory clinical outcomes at up to 40 weeks included measures of motor and nonmotor disability. Brain iron content measured with the use of magnetic resonance imaging was also an exploratory outcome. RESULTS: A total of 372 participants were enrolled; 186 were assigned to receive deferiprone and 186 to receive placebo. Progression of symptoms led to the initiation of dopaminergic therapy in 22.0% of the participants in the deferiprone group and 2.7% of those in the placebo group. The mean MDS-UPDRS total score at baseline was 34.3 in the deferiprone group and 33.2 in the placebo group and increased (worsened) by 15.6 points and 6.3 points, respectively (difference, 9.3 points; 95% confidence interval, 6.3 to 12.2; P<0.001). Nigrostriatal iron content decreased more in the deferiprone group than in the placebo group. The main serious adverse events with deferiprone were agranulocytosis in 2 participants and neutropenia in 3 participants. CONCLUSIONS: In participants with early Parkinson's disease who had never received levodopa and in whom treatment with dopaminergic medications was not planned, deferiprone was associated with worse scores in measures of parkinsonism than those with placebo over a period of 36 weeks. (Funded by the European Union Horizon 2020 program; FAIRPARK-II ClinicalTrials.gov number, NCT02655315.).


Asunto(s)
Antiparkinsonianos , Deferiprona , Quelantes del Hierro , Hierro , Enfermedad de Parkinson , Sustancia Negra , Humanos , Deferiprona/administración & dosificación , Deferiprona/efectos adversos , Deferiprona/farmacología , Deferiprona/uso terapéutico , Hierro/análisis , Hierro/metabolismo , Levodopa/uso terapéutico , Neutropenia/inducido químicamente , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Quelantes del Hierro/administración & dosificación , Quelantes del Hierro/efectos adversos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Sustancia Negra/química , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Progresión de la Enfermedad , Método Doble Ciego , Administración Oral , Encéfalo/diagnóstico por imagen , Química Encefálica , Dopaminérgicos/administración & dosificación , Dopaminérgicos/efectos adversos , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/efectos adversos , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico
4.
J Physiol ; 602(10): 2253-2264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638084

RESUMEN

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Asunto(s)
Carbidopa , Potenciales Evocados Motores , Levodopa , Estimulación Magnética Transcraneal , Humanos , Masculino , Levodopa/farmacología , Adulto , Potenciales Evocados Motores/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Carbidopa/farmacología , Adulto Joven , Inhibición Neural/efectos de los fármacos , Método Doble Ciego , Dopaminérgicos/farmacología , Dopamina/farmacología , Combinación de Medicamentos , Nervio Mediano/fisiología , Nervio Mediano/efectos de los fármacos
5.
J Neurophysiol ; 131(2): 435-445, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230880

RESUMEN

Biomarkers obtained from the neurophysiological signals of patients with Parkinson's disease (PD) have objective value in assessing their motor condition for effective diagnosis, monitoring, and clinical intervention. Prominent cortical biomarkers of PD have typically been derived from various ß band wave features. This study approached the topic from an alternative perspective and attempted to estimate a recently suggested measure representing α band nonlinear autocorrelative memory from a publicly available EEG dataset that involves 15 patients with earlier-stage PD (dopaminergic medication OFF and ON states) and 16 age-matched healthy controls. The cortical nonlinearity was elevated for the PD ON state compared with the OFF state for bilateral sensorimotor channels C3 and C4 (n = 26; P = 0.003). A similar statistical difference was also identified between PD OFF state and healthy subjects (n = 26; P = 0.049). Analysis over all channels revealed that the α band nonlinearity induced upon medication was constrained to sensorimotor regions. The α nonlinearity measure was compared with a well-accepted cortical biomarker of ß-γ phase-amplitude coupling (PAC). They were in moderate negative correlation (r = -0.412; P = 0.036) for only healthy subjects, but not for the patients. The nonlinearity measure was found to be insusceptible to the nonstationary variations within the particular data. Our study provides further evidence that the α band nonlinearity measure can serve as a promising cortical biomarker of PD. The suggested measure can be estimated from a noninvasive low-resolution single scalp EEG channel of patients with relatively early-stage PD, who did not yet need to undergo deep brain stimulation operation.NEW & NOTEWORTHY This study suggests a nonlinearity measure that differentiates Parkinson's disease (PD) dopamine OFF-state scalp EEG data from those of dopamine ON-state patients and healthy subjects. Unlike typical PD cortical biomarkers based on ß band activity, this metric shows elevation upon dopaminergic medication in the α band. We provide evidence supporting its potential as an early-stage promising PD biomarker that can be estimated from noninvasive EEG recordings with low resolution and SNR.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Electroencefalografía , Dopaminérgicos , Biomarcadores
6.
Eur J Neurosci ; 59(6): 1296-1310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38054361

RESUMEN

Astrocytes, glial cells in the central nervous system, perform a multitude of homeostatic functions and are in constant bidirectional communication with neuronal cells, a concept named the tripartite synapse; however, their role in the dopamine homeostasis remains unexplored. The aim of this study was to clarify the pharmacological and molecular characteristics of dopamine transport in cultured cortical astrocytes of adult rats. In addition, we were interested in the expression of mRNA of dopamine transporters as well as dopamine receptors D1 and D2 and in the effect of dopaminergic drugs on the expression of these transporters and receptors. We have found that astrocytes possess both Na+-dependent and Na+-independent transporters. Uptake of radiolabelled dopamine was time-, temperature- and concentration-dependent and was inhibited by decynium-22, a plasma membrane monoamine transporter inhibitor, tricyclic antidepressants desipramine and nortriptyline, both inhibitors of the norepinephrine transporter. Results of transporter mRNA expression indicate that the main transporters involved in cortical astrocyte dopamine uptake are the norepinephrine transporter and plasma membrane monoamine transporter. Both dopamine receptor subtypes were identified in cortical astrocyte cultures. Twenty-four-hour treatment of astrocyte cultures with apomorphine, a D1/D2 agonist, induced upregulation of D1 receptor, norepinephrine transporter and plasma membrane monoamine transporter, whereas the latter was downregulated by haloperidol and L-DOPA. Astrocytes take up dopamine by multiple transporters and express dopamine receptors, which are sensitive to dopaminergic drugs. The findings of this study could open a promising area of research for the fine-tuning of existing therapeutic strategies.


Asunto(s)
Astrocitos , Dopamina , Ratas , Animales , Astrocitos/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopaminérgicos/farmacología , Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/metabolismo , ARN Mensajero/metabolismo
7.
Hum Brain Mapp ; 45(5): e26668, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520378

RESUMEN

Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Mapeo Encefálico , Frecuencia Cardíaca , Imagen por Resonancia Magnética , Encéfalo , Dopaminérgicos
8.
Psychophysiology ; 61(7): e14571, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679809

RESUMEN

Given experience in cluttered but stable visual environments, our eye-movements form stereotyped routines that sample task-relevant locations, while not mixing-up routines between similar task-settings. Both dopamine signaling and mindfulness have been posited as factors that influence the formation of such routines, yet quantification of their impact remains to be tested in healthy humans. Over two sessions, participants searched through grids of doors to find hidden targets, using a gaze-contingent display. Within each session, door scenes appeared in either one of two colors, with each color signaling a differing set of likely target locations. We derived measures for how well target locations were learned (target-accuracy), how routine were sets of eye-movements (stereotypy), and the extent of interference between the two scenes (setting-accuracy). Participants completed two sessions, where they were administered either levodopa (dopamine precursor) or placebo (vitamin C), under double-blind counterbalanced conditions. Dopamine and trait mindfulness (assessed by questionnaire) interacted to influence both target-accuracy and stereotypy. Increasing dopamine improved accuracy and reduced stereotypy for high mindfulness scorers, but induced the opposite pattern for low mindfulness scorers. Dopamine also disrupted setting-accuracy invariant to mindfulness. Our findings show that mindfulness modulates the impact of dopamine on the target-accuracy and stereotypy of eye-movement routines, whereas increasing dopamine promotes interference between task-settings, regardless of mindfulness. These findings provide a link between non-human and human models regarding the influence of dopamine on the formation of task-relevant eye-movement routines and provide novel insights into behavior-trait factors that modulate the use of experience when building adaptive repertoires.


Asunto(s)
Dopamina , Atención Plena , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Dopamina/metabolismo , Levodopa/farmacología , Levodopa/administración & dosificación , Método Doble Ciego , Movimientos Oculares/fisiología , Percepción Visual/fisiología , Dopaminérgicos/farmacología , Atención/fisiología , Desempeño Psicomotor/fisiología
9.
Brain ; 146(9): 3676-3689, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37192341

RESUMEN

Dopaminergic medication is well established to boost reward- versus punishment-based learning in Parkinson's disease. However, there is tremendous variability in dopaminergic medication effects across different individuals, with some patients exhibiting much greater cognitive sensitivity to medication than others. We aimed to unravel the mechanisms underlying this individual variability in a large heterogeneous sample of early-stage patients with Parkinson's disease as a function of comorbid neuropsychiatric symptomatology, in particular impulse control disorders and depression. One hundred and ninety-nine patients with Parkinson's disease (138 ON medication and 61 OFF medication) and 59 healthy controls were scanned with functional MRI while they performed an established probabilistic instrumental learning task. Reinforcement learning model-based analyses revealed medication group differences in learning from gains versus losses, but only in patients with impulse control disorders. Furthermore, expected-value related brain signalling in the ventromedial prefrontal cortex was increased in patients with impulse control disorders ON medication compared with those OFF medication, while striatal reward prediction error signalling remained unaltered. These data substantiate the hypothesis that dopamine's effects on reinforcement learning in Parkinson's disease vary with individual differences in comorbid impulse control disorder and suggest they reflect deficient computation of value in medial frontal cortex, rather than deficient reward prediction error signalling in striatum. See Michael Browning (https://doi.org/10.1093/brain/awad248) for a scientific commentary on this article.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Dopaminérgicos/uso terapéutico , Refuerzo en Psicología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/complicaciones
10.
J Neuroeng Rehabil ; 21(1): 118, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003450

RESUMEN

BACKGROUND: How the joints exactly move and interact and how this reflects PD-related gait abnormalities and the response to dopaminergic treatment is poorly understood. A detailed understanding of these kinematics can inform clinical management and treatment decisions. The aim of the study was to investigate the influence of different gait speeds and medication on/off conditions on inter-joint coordination, as well as kinematic differences throughout the whole gait cycle in well characterized pwPD. METHODS: 29 controls and 29 PD patients during medication on, 8 of them also during medication off walked a straight walking path in slow, preferred and fast walking speeds. Gait data was collected using optical motion capture system. Kinematics of the hip and knee and coordinated hip-knee kinematics were evaluated using Statistical Parametric Mapping (SPM) and cyclograms (angle-angle plots). Values derived from cyclograms were compared using repeated-measures ANOVA for within group, and ttest for between group comparisons. RESULTS: PD gait differed from controls mainly by lower knee range of motion (ROM). Adaptation to gait speed in PD was mainly achieved by increasing hip ROM. Regularity of gait was worse in PD but only during preferred speed. The ratios of different speed cyclograms were smaller in the PD groups. SPM analyses revealed that PD participants had smaller hip and knee angles during the swing phase, and PD participants reached peak hip flexion later than controls. Withdrawal of medication showed an exacerbation of only a few parameters. CONCLUSIONS: Our findings demonstrate the potential of granular kinematic analyses, including > 1 joint, for disease and treatment monitoring in PD. Our approach can be extended to further mobility-limiting conditions and other joint combinations. TRIAL REGISTRATION: The study is registered in the German Clinical Trials Register (DRKS00022998, registered on 04 Sep 2020).


Asunto(s)
Dopaminérgicos , Enfermedad de Parkinson , Rango del Movimiento Articular , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Estudios de Casos y Controles , Fenómenos Biomecánicos , Persona de Mediana Edad , Anciano , Dopaminérgicos/uso terapéutico , Rango del Movimiento Articular/fisiología , Articulación de la Rodilla/fisiopatología , Marcha/fisiología , Marcha/efectos de los fármacos , Articulación de la Cadera/fisiopatología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Articulaciones/fisiopatología
11.
Dev Growth Differ ; 65(2): 120-131, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36645274

RESUMEN

Activation of the dopamine type-D2 receptor in late gastrula of sea urchins is known to decrease the growth rate of post-oral arms of larvae, and, as a result, the phenotype of these larvae mimics that of larvae developing in the abundance of food. Our data indicate that the effect of dopamine on sea urchin larvae is stage-dependent. In our experiment, the early four-armed plutei (96 hours post fertilization, hpf) of Strongylocentrotus intermedius had substantially shorter post-oral arms if they developed from the larvae treated with dopamine at the early pluteus stage (48 hpf), when they had already formed the first dopaminergic neurons, as compared to the plutei from the larvae treated with dopamine at the mid to late gastrula stage (24 hpf), when they did not have any neurons yet. The pre-treatment of larvae in 6-hydroxydopamine, a neurotoxic analog of dopamine that specifically disrupts activity of dopaminergic neurons, prevented the development of the short post-oral arms phenotype in larvae. These results confirm the assumption that dopaminergic neurons play an important role in the development of the short post-oral arms phenotype in sea urchin larvae. Another finding of our study is that the dopamine treatment also affects the growth of the body rods and the overall larval body growth. Based on these observations, we suggest researchers to carefully select the developmental stage, pharmacological agents, and incubation time for experimental manipulation of sea urchin larvae phenotypes through dopaminergic nervous system.


Asunto(s)
Dopamina , Erizos de Mar , Animales , Larva , Dopaminérgicos/farmacología
12.
Mov Disord ; 38(2): 232-243, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424835

RESUMEN

BACKGROUND: Local field potentials (LFPs) represent the summation of periodic (oscillations) and aperiodic (fractal) signals. Although previous studies showed changes in beta band oscillations and burst characteristics of the subthalamic nucleus (STN) in Parkinson's disease (PD), how aperiodic activity in the STN is related to PD pathophysiology is unknown. OBJECTIVES: The study aimed to characterize the long-term effects of STN-deep brain stimulation (DBS) and dopaminergic medications on aperiodic activities and beta bursts. METHODS: A total of 10 patients with PD participated in this longitudinal study. Simultaneous bilateral STN-LFP recordings were conducted in six separate visits during a period of 18 months using the Activa PC + S device in the off and on dopaminergic medication states. We used irregular-resampling auto-spectral analysis to separate oscillations and aperiodic components (exponent and offset) in the power spectrum of STN-LFP signals in beta band. RESULTS: Our results revealed a systematic increase in both the exponent and the offset of the aperiodic spectrum over 18 months following the DBS implantation, independent of the dopaminergic medication state of patients with PD. In contrast, beta burst durations and amplitudes were stable over time and were suppressed by dopaminergic medications. CONCLUSIONS: These findings indicate that oscillations and aperiodic activities reflect at least partially distinct yet complementary neural mechanisms, which should be considered in the design of robust biomarkers to optimize adaptive DBS. Given the link between increased gamma-aminobutyric acidergic (GABAergic) transmission and higher aperiodic activity, our findings suggest that long-term STN-DBS may relate to increased inhibition in the basal ganglia. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estudios Longitudinales , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Ganglios Basales , Dopaminérgicos/uso terapéutico , Ritmo beta/fisiología
13.
Brain ; 145(11): 4042-4055, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35357463

RESUMEN

Dopaminergic medication is widely used to alleviate motor symptoms of Parkinson's disease, but these medications also impact cognition with significant variability across patients. It is hypothesized that dopaminergic medication impacts cognition and working memory in Parkinson's disease by modulating frontoparietal-basal ganglia cognitive control circuits, but little is known about the underlying causal signalling mechanisms and their relation to individual differences in response to dopaminergic medication. Here we use a novel state-space computational model with ultra-fast (490 ms resolution) functional MRI to investigate dynamic causal signalling in frontoparietal-basal ganglia circuits associated with working memory in 44 Parkinson's disease patients ON and OFF dopaminergic medication, as well as matched 36 healthy controls. Our analysis revealed aberrant causal signalling in frontoparietal-basal ganglia circuits in Parkinson's disease patients OFF medication. Importantly, aberrant signalling was normalized by dopaminergic medication and a novel quantitative distance measure predicted individual differences in cognitive change associated with medication in Parkinson's disease patients. These findings were specific to causal signalling measures, as no such effects were detected with conventional non-causal connectivity measures. Our analysis also identified a specific frontoparietal causal signalling pathway from right middle frontal gyrus to right posterior parietal cortex that is impaired in Parkinson's disease. Unlike in healthy controls, the strength of causal interactions in this pathway did not increase with working memory load and the strength of load-dependent causal weights was not related to individual differences in working memory task performance in Parkinson's disease patients OFF medication. However, dopaminergic medication in Parkinson's disease patients reinstated the relation with working memory performance. Our findings provide new insights into aberrant causal brain circuit dynamics during working memory and identify mechanisms by which dopaminergic medication normalizes cognitive control circuits.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Dopaminérgicos/uso terapéutico , Ganglios Basales , Cognición/fisiología , Imagen por Resonancia Magnética
14.
Neurol Sci ; 44(3): 913-918, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36376554

RESUMEN

BACKGROUND: Monotherapy with monoamine oxidase B (MAO-B) inhibitors enhances the level of endogenous dopamine in treatment for Parkinson's disease (PD) and provides some benefits. Certain neuropsychiatric functions are also regulated by central dopaminergic activity. AIM: To investigate the relationship of the efficacy of monotherapy with MAO-B inhibitors on motor symptoms in PD with baseline cognitive function. PATIENTS AND METHODS: Outcomes were examined for 27 consecutive drug-naïve PD patients who received initial treatment with a MAO-B inhibitor (selegiline: 11, rasagiline: 16). Selegiline was titrated to an optimal dose. The dose of rasagiline was fixed at 1 mg/day. Motor symptoms were assessed using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III before treatment and after the efficacy reached a plateau within 19 weeks after drug initiation, and the % improvement in motor symptoms was calculated. Pre-treatment cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) and Frontal Assessment Battery (FAB). Correlations of % improvement in motor symptoms and baseline cognitive assessments were examined using Spearman correlation coefficients and multiple regression analysis. RESULTS: In all patients, the mean % improvement in motor symptoms was 46.5% (range 0-83.3%). Spearman correlation coefficients showed the % improvement in motor symptoms was correlated with FAB (r = 0.631, p < 0.001). In multiple regression analysis with patient background factors as independent variables, only FAB was associated with improvement in motor symptoms in the MAO-B group. CONCLUSION: Better FAB scores predict a significant improvement in motor symptoms with treatment with MAO-B inhibitors, suggesting high activity of endogenous dopamine.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/uso terapéutico , Selegilina/farmacología , Antiparkinsonianos/uso terapéutico , Dopamina , Inhibidores de la Monoaminooxidasa/uso terapéutico , Indanos/uso terapéutico , Dopaminérgicos/uso terapéutico , Monoaminooxidasa
15.
Eur Neurol ; 86(6): 377-386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37673041

RESUMEN

INTRODUCTION: Sleep disorders are common in Parkinson's disease (PD) and significantly impact quality of life. Herein, we surveyed the incidence and severity of sleep disorders in Chinese PD patients and observed their relationship with dopaminergic drugs. METHODS: We collected the demographic and disease information of 232 PD patients. The incidence and severity of sleep disorders were surveyed with the Parkinson's disease sleep scale (PDSS) Chinese version. Data on dopaminergic drug intake were collected and converted to levodopa equivalent doses (LED). RESULTS: The average total score of PDSS in 232 patients was 119.3 ± 19.7. There was a significant difference in PDSS scores between groups classified by the Hoehn-Yahr (H&Y) stage, but not between the groups classified by the type of dopaminergic drugs. Stepwise regression analysis revealed that the LED of dopaminergic drugs taken before bedtime (p < 0.00), LED of dopaminergic drugs taken over a 24-h period (p < 0.00), and scores of the Hamilton Rating Scale for Depression (HAMD) (p = 0.01) were determinants of PDSS. CONCLUSION: Sleep disorders in PD patients may be multifactorial. High dosage of dopaminergic drugs taken prior to sleep, daily total high dosage of dopaminergic drugs, and depression exert negative effects on subjective sleep. The timing and dosage of dopaminergic drugs taken before bedtime should be considered in PD management.


Asunto(s)
Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/epidemiología , Calidad de Vida , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , Dopaminérgicos/efectos adversos , Sueño , Levodopa
16.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630420

RESUMEN

Monoamine oxidase (MAO, EC 1.4.3.4) is responsible for the oxidative breakdown of both endogenous and exogenous amines and exists in MAO-A and MAO-B isomers. Eighteen indole-based phenylallylidene derivatives were synthesized via nucleophilic addition reactions comprising three sub-series, IHC, IHMC, and IHNC, and were developed and examined for their ability to inhibit MAO. Among them, compound IHC3 showed a strong MAO-B inhibitory effect with an IC50 (half-maximal inhibitory concentration) value of 1.672 µM, followed by IHC2 (IC50 = 16.934 µM). Additionally, IHC3 showed the highest selectivity index (SI) value of >23.92. The effectiveness of IHC3 was lower than the reference pargyline (0.14 µM); however, the SI value was higher than pargyline (17.16). Structurally, the IHC (-H in the B-ring) sub-series exhibited relatively stronger MAO-B inhibition than the others. In the IHC series, IHC3 (-F in the A-ring) exhibited stronger MAO-B suppression than the other substituted derivatives in the order -F > -Br > -Cl > -OCH3, -CH3, and -H at the 2-position in the A-ring. In the reversibility and enzyme kinetics experiments, IHC3 was a reversible inhibitor with a Ki value of 0.51 ± 0.15 µM for MAO-B. Further, it was observed that IHC3 greatly decreased the cell death caused by rotenone in SH-SY5Y neuroblastoma cells. A molecular docking study of the lead molecule was also performed to determine hypothetical interactions in the enzyme-binding cavity. These findings suggest that IHC3 is a strong, specific, and reversible MAO-B inhibitor that can be used to treat neurological diseases.


Asunto(s)
Antipsicóticos , Isatina , Neuroblastoma , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Microondas , Simulación del Acoplamiento Molecular , Pargilina , Farmacóforo , Dopaminérgicos , Monoaminooxidasa
17.
J Neurosci ; 41(44): 9065-9081, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34544837

RESUMEN

Stimulatory coupling of dopamine D1 (D1R) and adenosine A2A receptors (A2AR) to adenylyl cyclase within the striatum is mediated through a specific Gαolfß2γ7 heterotrimer to ultimately modulate motor behaviors. To dissect the individual roles of the Gαolfß2γ7 heterotrimer in different populations of medium spiny neurons (MSNs), we produced and characterized conditional mouse models, in which the Gng7 gene was deleted in either the D1R- or A2AR/D2R-expressing MSNs. We show that conditional loss of γ7 disrupts the cell type-specific assembly of the Gαolfß2γ7 heterotrimer, thereby identifying its circumscribed roles acting downstream of either the D1Rs or A2ARs in coordinating motor behaviors, including in vivo responses to psychostimulants. We reveal that Gαolfß2γ7/cAMP signal in D1R-MSNs does not impact spontaneous and amphetamine-induced locomotor behaviors in male and female mice, while its loss in A2AR/D2R-MSNs results in a hyperlocomotor phenotype and enhanced locomotor response to amphetamine. Additionally, Gαolfß2γ7/cAMP signal in either D1R- or A2AR/D2R-expressing MSNs is not required for the activation of PKA signaling by amphetamine. Finally, we show that Gαolfß2γ7 signaling acting downstream of D1Rs is selectively implicated in the acute locomotor-enhancing effects of morphine. Collectively, these results support the general notion that receptors use specific Gαßγ proteins to direct the fidelity of downstream signaling pathways and to elicit a diverse repertoire of cellular functions. Specifically, these findings highlight the critical role for the γ7 protein in determining the cellular level, and hence, the function of the Gαolfß2γ7 heterotrimer in several disease states associated with dysfunctional striatal signaling.SIGNIFICANCE STATEMENT Dysfunction or imbalance of cAMP signaling in the striatum has been linked to several neurologic and neuropsychiatric disorders, including Parkinson's disease, dystonia, schizophrenia, and drug addiction. By genetically targeting the γ7 subunit in distinct striatal neuronal subpopulations in mice, we demonstrate that the formation and function of the Gαolfß2γ7 heterotrimer, which represents the rate-limiting step for cAMP production in the striatum, is selectively disrupted. Furthermore, we reveal cell type-specific roles for Gαolfß2γ7-mediated cAMP production in the control of spontaneous locomotion as well as behavioral and molecular responses to psychostimulants. Our findings identify the γ7 protein as a novel therapeutic target for disease states associated with dysfunctional striatal cAMP signaling.


Asunto(s)
Cuerpo Estriado/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Locomoción , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopaminérgicos/farmacología , Femenino , Subunidades gamma de la Proteína de Unión al GTP/genética , Eliminación de Gen , Fuerza de la Mano , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo , Transducción de Señal
18.
Mol Pharmacol ; 101(3): 123-131, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34906999

RESUMEN

Aberrant dopamine (DA) signaling is associated with several psychiatric disorders, such as autism, bipolar disorder, addiction, and Parkinson's disease, and several medications that target the DA transporter (DAT) can induce or treat these disorders. In addition, psychostimulants, such as cocaine and D-amphetamine (AMPH), rely on the competitive interactions with the transporter's substrate binding site to produce their rewarding effects. Agents that exhibit noncompetitive, allosteric modulation of DAT remain an important topic of investigation due to their potential therapeutic applications. We previously identified a novel allosteric modulator of human DAT, KM822, that can decrease the affinity of cocaine for DAT and attenuate cocaine-elicited behaviors; however, whether DAT is the sole mediator of KM822 actions in vivo is unproven given the large number of potential off-target sites. Here, we provide in silico and in vitro evidence that the allosteric site engaged by KM822 is conserved between human DAT and Caenorhabditis elegans DAT-1. KM822 binds to a similar pocket in DAT-1 as previously identified in human DAT. In functional dopamine uptake assays, KM822 affects the interaction between AMPH and DAT-1 by reducing the affinity of AMPH for DAT-1. Finally, through a combination of genetic and pharmacological in vivo approaches we provide evidence that KM822 diminishes the behavioral actions of AMPH on swimming-induced paralysis through a direct allosteric modulation of DAT-1. More broadly, our findings demonstrate allosteric modulation of DAT as a behavior modifying strategy and suggests that Caenorhabditis elegans can be operationalized to identify and investigate the interactions of DAT allosteric modulators. SIGNIFICANCE STATEMENT: We previously demonstrated that the dopamine transporter (DAT) allosteric modulator KM822 decreases cocaine affinity for human DAT. Here, using in silico and in vivo genetic approaches, we extend this finding to interactions with amphetamine, demonstrating evolutionary conservation of the DAT allosteric site. In Caenorhabditis elegans, we report that KM822 suppresses amphetamine behavioral effects via specific interactions with DAT-1. Our findings reveal Caenorhabditis elegans as a new tool to study allosteric modulation of DAT and its behavioral consequences.


Asunto(s)
Anfetamina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dopaminérgicos/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Anfetamina/farmacología , Animales , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Chlorocebus aethiops , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína
19.
Neuroimage ; 257: 119320, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35580809

RESUMEN

The subthalamic nucleus (STN) is a primary target for deep brain stimulation in Parkinson's disease (PD). Although small in size, the STN is commonly partitioned into sensorimotor, cognitive/associative, and limbic subregions based on its structural connectivity profile to cortical areas. We investigated whether such a regional specialization is also supported by functional connectivity between local field potential recordings and simultaneous magnetoencephalography. Using a novel data set of 21 PD patients, we replicated previously reported cortico-STN coherence networks in the theta/alpha and beta frequency ranges, and looked for the spatial distribution of these networks within the STN region. Although theta/alpha and beta coherence peaks were both observed in on-medication recordings from electrode contacts at several locations within and around the STN, sites with theta/alpha coherence peaks were situated at significantly more inferior MNI coordinates than beta coherence peaks. Sites with only theta/alpha coherence peaks, i.e. without distinct beta coherence, were mostly located near the border of sensorimotor and cognitive/associative subregions as defined by a tractography-based atlas of the STN. Peak coherence values were largely unaltered by the medication state of the subject, however, theta/alpha peaks were more often identified in recordings obtained after administration of dopaminergic medication. Our findings suggest the existence of a frequency-specific topography of cortico-STN coherence within the STN, albeit with considerable spatial overlap between functional networks. Consequently, optimization of deep brain stimulation targeting might remain a trade-off between alleviating motor symptoms and avoiding adverse neuropsychiatric side effects.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Dopaminérgicos , Humanos , Magnetoencefalografía
20.
J Neurochem ; 160(2): 172-184, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855998

RESUMEN

The prevention of tau protein aggregations is a therapeutic goal for the treatment of Alzheimer's disease (AD), and hydromethylthionine (HMT) (also known as leucomethylthioninium-mesylate [LMTM]), is a potent inhibitor of tau aggregation in vitro and in vivo. In two Phase 3 clinical trials in AD, HMT had greater pharmacological activity on clinical endpoints in patients not receiving approved symptomatic treatments for AD (acetylcholinesterase (AChE) inhibitors and/or memantine) despite different mechanisms of action. To investigate this drug interaction in an animal model, we used tau-transgenic L1 and wild-type NMRI mice treated with rivastigmine or memantine prior to adding HMT, and measured changes in hippocampal acetylcholine (ACh) by microdialysis. HMT given alone doubled hippocampal ACh levels in both mouse lines and increased stimulated ACh release induced by exploration of the open field or by infusion of scopolamine. Rivastigmine increased ACh release in both mouse lines, whereas memantine was more active in tau-transgenic L1 mice. Importantly, our study revealed a negative interaction between HMT and symptomatic AD drugs: the HMT effect was completely eliminated in mice that had been pre-treated with either rivastigmine or memantine. Rivastigmine was found to inhibit AChE, whereas HMT and memantine had no effects on AChE or on choline acetyltransferase (ChAT). The interactions observed in this study demonstrate that HMT enhances cholinergic activity in mouse brain by a mechanism of action unrelated to AChE inhibition. Our findings establish that the drug interaction that was first observed clinically has a neuropharmacological basis and is not restricted to animals with tau aggregation pathology. Given the importance of the cholinergic system for memory function, the potential for commonly used AD drugs to interfere with the treatment effects of disease-modifying drugs needs to be taken into account in the design of clinical trials.


Asunto(s)
Hipocampo/efectos de los fármacos , Memantina/farmacología , Azul de Metileno/análogos & derivados , Rivastigmina/farmacología , Transducción de Señal/efectos de los fármacos , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/farmacología , Dopaminérgicos/farmacología , Interacciones Farmacológicas , Femenino , Hipocampo/metabolismo , Azul de Metileno/farmacología , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA