Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558079

RESUMEN

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.


Asunto(s)
Bacteriófagos , Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Borrelia burgdorferi/genética , Bacteriófagos/genética , Plásmidos/genética , Enfermedad de Lyme/genética , Genómica , ADN
2.
Nucleic Acids Res ; 52(9): 5320-5335, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38366569

RESUMEN

The σ54-σS sigma factor cascade plays a central role in regulating differential gene expression during the enzootic cycle of Borreliella burgdorferi, the Lyme disease pathogen. In this pathway, the primary transcription of rpoS (which encodes σS) is under the control of σ54 which is activated by a bacterial enhancer-binding protein (EBP), Rrp2. The σ54-dependent activation in B. burgdorferi has long been thought to be unique, requiring an additional factor, BosR, a homologue of classical Fur/PerR repressor/activator. However, how BosR is involved in this σ54-dependent activation remains unclear and perplexing. In this study, we demonstrate that BosR does not function as a regulator for rpoS transcriptional activation. Instead, it functions as a novel RNA-binding protein that governs the turnover rate of rpoS mRNA. We further show that BosR directly binds to the 5' untranslated region (UTR) of rpoS mRNA, and the binding region overlaps with a region required for rpoS mRNA degradation. Mutations within this 5'UTR region result in BosR-independent RpoS production. Collectively, these results uncover a novel role of Fur/PerR family regulators as RNA-binding proteins and redefine the paradigm of the σ54-σS pathway in B. burgdorferi.


Asunto(s)
Proteínas Bacterianas , Borrelia burgdorferi , Regulación Bacteriana de la Expresión Génica , Estabilidad del ARN , Proteínas de Unión al ARN , Factor sigma , Factor sigma/metabolismo , Factor sigma/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regiones no Traducidas 5' , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Polimerasa Sigma 54/metabolismo , ARN Polimerasa Sigma 54/genética
3.
J Biol Chem ; 300(5): 107236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552741

RESUMEN

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión Proteica
4.
PLoS Pathog ; 19(11): e1011752, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011206

RESUMEN

As an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B. burgdorferi through modulating the stability of RpoS, a key transcriptional regulator of the spirochete. First, microscopic analyses using green-fluorescence-protein (GFP) tags reveal that CheA1 has a unique and dynamic cellular localization. Second, loss-of-function studies indicate that CheA1 is not required for chemotaxis in vitro despite sharing a high sequence and structural similarity to its counterparts from other bacteria. Third, mouse infection studies using needle inoculations show that a deletion mutant of CheA1 (cheA1mut) is able to establish systemic infection in immune-deficient mice but fails to do so in immune-competent mice albeit the mutant can survive at the inoculation site for up to 28 days. Tick and mouse infection studies further demonstrate that CheA1 is dispensable for tick colonization and acquisition but essential for tick transmission. Lastly, mechanistic studies combining immunoblotting, protein turnover, mutagenesis, and RNA-seq analyses reveal that depletion of CheA1 affects RpoS stability, leading to reduced expression of several RpoS-regulated virulence factors (i.e., OspC, BBK32, and DbpA), likely due to dysregulated clpX and lon protease expression. Bulk RNA-seq analysis of infected mouse skin tissues further show that cheA1mut fails to elicit mouse tnf-α, il-10, il-1ß, and ccl2 expression, four important cytokines for Lyme disease development and B. burgdorferi transmigration. Collectively, these results reveal a unique role and regulatory mechanism of CheA1 in modulating virulence factor expression and add new insights into understanding the regulatory network of B. burgdorferi.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Garrapatas , Animales , Ratones , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Quimiotaxis , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Garrapatas/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/genética , Factor sigma/metabolismo
5.
Traffic ; 23(12): 558-567, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224049

RESUMEN

Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Borrelia burgdorferi/metabolismo , Ligandos , Enfermedad de Lyme/genética , Enfermedad de Lyme/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fagosomas/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Proteínas de Unión al GTP rab , Animales , Ratones
6.
Mol Microbiol ; 119(6): 711-727, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086029

RESUMEN

PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Grupo Borrelia Burgdorferi/genética , Enfermedad de Lyme/genética , ARN/metabolismo
7.
PLoS Pathog ; 18(3): e1010365, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324997

RESUMEN

Type I interferon (IFN) has been identified in patients with Lyme disease, and its abundant expression in joint tissues of C3H mice precedes development of Lyme arthritis. Forward genetics using C3H mice with severe Lyme arthritis and C57BL/6 (B6) mice with mild Lyme arthritis identified the Borrelia burgdorferi arthritis-associated locus 1 (Bbaa1) on chromosome 4 (Chr4) as a regulator of B. burgdorferi-induced IFNß expression and Lyme arthritis severity. B6 mice introgressed with the C3H allele for Bbaa1 (B6.C3-Bbaa1 mice) displayed increased severity of arthritis, which is initiated by myeloid lineage cells in joints. Using advanced congenic lines, the physical size of the Bbaa1 interval has been reduced to 2 Mbp, allowing for identification of potential genetic regulators. Small interfering RNA (siRNA)-mediated silencing identified Cdkn2a as the gene responsible for Bbaa1 allele-regulated induction of IFNß and IFN-stimulated genes (ISGs) in bone marrow-derived macrophages (BMDMs). The Cdkn2a-encoded p19 alternative reading frame (p19ARF) protein regulates IFNß induction in BMDMs as shown by siRNA silencing and overexpression of ARF. In vivo studies demonstrated that p19ARF contributes to joint-specific induction of IFNß and arthritis severity in B. burgdorferi-infected mice. p19ARF regulates B. burgdorferi-induced IFNß in BMDMs by stabilizing the tumor suppressor p53 and sequestering the transcriptional repressor BCL6. Our findings link p19ARF regulation of p53 and BCL6 to the severity of IFNß-induced Lyme arthritis in vivo and indicate potential novel roles for p19ARF, p53, and BCL6 in Lyme disease and other IFN hyperproduction syndromes.


Asunto(s)
Artritis , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Enfermedad de Lyme , Animales , Artritis/genética , Borrelia burgdorferi , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Genes p16 , Interferón beta/genética , Interferón beta/metabolismo , Enfermedad de Lyme/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Sistemas de Lectura , Proteína p53 Supresora de Tumor/genética
8.
PLoS Pathog ; 18(5): e1010511, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35605029

RESUMEN

Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.


Asunto(s)
Adhesinas Bacterianas , Variación Antigénica , Antígenos Bacterianos , Proteínas Bacterianas , Borrelia burgdorferi , Lipoproteínas , Enfermedad de Lyme , Microvasos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Animales , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Adhesión Bacteriana/genética , Adhesión Bacteriana/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Dermatán Sulfato/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Mamíferos , Ratones , Microvasos/inmunología , Microvasos/microbiología , Resistencia al Corte
9.
BMC Infect Dis ; 24(1): 337, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515037

RESUMEN

BACKGROUND: Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS: We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS: We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS: Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION: The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Humanos , Estudio de Asociación del Genoma Completo , Estudios Prospectivos , Leucocitos Mononucleares , Susceptibilidad a Enfermedades , Enfermedad de Lyme/genética , Enfermedad de Lyme/diagnóstico , Borrelia burgdorferi/genética , Citocinas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/uso terapéutico , Grupo Borrelia Burgdorferi/genética , Secretoglobinas/genética
10.
PLoS Pathog ; 17(1): e1009180, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33428666

RESUMEN

Borrelia burgdorferi must acquire all of its amino acids (AAs) from its arthropod vector and vertebrate host. Previously, we determined that peptide uptake via the oligopeptide (Opp) ABC transporter is essential for spirochete viability in vitro and during infection. Our prior study also suggested that B. burgdorferi employs temporal regulation in concert with structural variation of oligopeptide-binding proteins (OppAs) to meet its AA requirements in each biological niche. Herein, we evaluated the contributions to the B. burgdorferi enzootic cycle of three of the spirochete's five OppAs (OppA1, OppA2, and OppA5). An oppA1 transposon (tn) mutant lysed in the hyperosmolar environment of the feeding tick, suggesting that OppA1 imports amino acids required for osmoprotection. The oppA2tn mutant displayed a profound defect in hematogenous dissemination in mice, yet persisted within skin while inducing only a minimal antibody response. These results, along with slightly decreased growth of the oppA2tn mutant within DMCs, suggest that OppA2 serves a minor nutritive role, while its dissemination defect points to an as yet uncharacterized signaling function. Previously, we identified a role for OppA5 in spirochete persistence within the mammalian host. We now show that the oppA5tn mutant displayed no defect during the tick phase of the cycle and could be tick-transmitted to naïve mice. Instead of working in tandem, however, OppA2 and OppA5 appear to function in a hierarchical manner; the ability of OppA5 to promote persistence relies upon the ability of OppA2 to facilitate dissemination. Structural homology models demonstrated variations within the binding pockets of OppA1, 2, and 5 indicative of different peptide repertoires. Rather than being redundant, B. burgdorferi's multiplicity of Opp binding proteins enables host-specific functional compartmentalization during the spirochete lifecycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/fisiología , Interacciones Huésped-Patógeno , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos/metabolismo , Animales , Transporte Biológico , Femenino , Regulación Bacteriana de la Expresión Génica , Enfermedad de Lyme/genética , Enfermedad de Lyme/metabolismo , Ratones , Ratones Endogámicos C3H , Ratas , Ratas Sprague-Dawley , Virulencia
11.
PLoS Pathog ; 17(4): e1009535, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33882111

RESUMEN

The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins. However, the burden of bpiP mutant in C3H/HeN mice at day 14, 28 and 62 post-infection was significantly lower compared to control strains. No viable bpiP mutant was re-isolated from any tissues at day 62 post-infection although bpiP mutant was able to colonize immunodeficient SCID at day 28 post-infection. Acquisition or transmission of bpiP mutant by Ixodes scapularis larvae or nymphs respectively, from and to mice, was significantly lower compared to control strains. Further analysis of bpiP mutant revealed increased sensitivity to vancomycin, osmotic stress, lysosomal extracts, human antimicrobial peptide cathelicidin-LL37, complement-dependent killing in the presence of day 14 post-infection mouse serum and increased internalization of CFSC-labeled bpiP mutant by macrophages and dendritic cells compared to control strains. These studies demonstrate the importance of accessory protein/s involved in sustaining integrity of PG and cell envelope during different phases of Bb infection.


Asunto(s)
Proteínas Bacterianas/fisiología , Borrelia burgdorferi/patogenicidad , Interacciones Huésped-Patógeno , Enfermedad de Lyme , Animales , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Aptitud Genética/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Factores Inmunológicos/fisiología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones SCID , Peptidoglicano/metabolismo , Virulencia/genética
12.
Mol Ecol ; 32(12): 3133-3149, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36912202

RESUMEN

The blacklegged tick (Ixodes scapularis (Journal of the Academy of Natural Sciences of Philadelphia, 1821, 2, 59)) is a vector of Borrelia burgdorferi sensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984, 34, 496), the causative bacterial agent of Lyme disease, part of a slow-moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well-known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome-wide markers in I. scapularis, conducted by using 3RAD (triple-enzyme restriction-site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters of I. scapularis. In regions where Lyme disease is increasing in frequency, the I. scapularis populations genetically group with ticks from historically highly Lyme-endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome-scale scaffolds for I. scapularis and are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity of I. scapularis and where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted by I. scapularis.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Ixodes/genética , Ixodes/microbiología , Filogeografía , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Borrelia burgdorferi/genética , Bacterias
13.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982667

RESUMEN

Borreliella (syn. Borrelia) burgdorferi is a spirochete bacterium that causes tick-borne Lyme disease. Along its lifecycle B. burgdorferi develops several pleomorphic forms with unclear biological and medical relevance. Surprisingly, these morphotypes have never been compared at the global transcriptome level. To fill this void, we grew B. burgdorferi spirochete, round body, bleb, and biofilm-dominated cultures and recovered their transcriptomes by RNAseq profiling. We found that round bodies share similar expression profiles with spirochetes, despite their morphological differences. This sharply contrasts to blebs and biofilms that showed unique transcriptomes, profoundly distinct from spirochetes and round bodies. To better characterize differentially expressed genes in non-spirochete morphotypes, we performed functional, positional, and evolutionary enrichment analyses. Our results suggest that spirochete to round body transition relies on the delicate regulation of a relatively small number of highly conserved genes, which are located on the main chromosome and involved in translation. In contrast, spirochete to bleb or biofilm transition includes substantial reshaping of transcription profiles towards plasmids-residing and evolutionary young genes, which originated in the ancestor of Borreliaceae. Despite their abundance the function of these Borreliaceae-specific genes is largely unknown. However, many known Lyme disease virulence genes implicated in immune evasion and tissue adhesion originated in this evolutionary period. Taken together, these regularities point to the possibility that bleb and biofilm morphotypes might be important in the dissemination and persistence of B. burgdorferi inside the mammalian host. On the other hand, they prioritize the large pool of unstudied Borreliaceae-specific genes for functional characterization because this subset likely contains undiscovered Lyme disease pathogenesis genes.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Humanos , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Enfermedad de Lyme/genética , Mamíferos/metabolismo , Transcriptoma
14.
PLoS Pathog ; 16(5): e1008516, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32413091

RESUMEN

Lyme disease, caused by Borrelia burgdorferi, B. afzelii and B. garinii, is a chronic, multi-systemic infection and the spectrum of tissues affected can vary with the Lyme disease strain. For example, whereas B. garinii infection is associated with neurologic manifestations, B. burgdorferi infection is associated with arthritis. The basis for tissue tropism is poorly understood, but has been long hypothesized to involve strain-specific interactions with host components in the target tissue. OspC (outer surface protein C) is a highly variable outer surface protein required for infectivity, and sequence differences in OspC are associated with variation in tissue invasiveness, but whether OspC directly influences tropism is unknown. We found that OspC binds to the extracellular matrix (ECM) components fibronectin and/or dermatan sulfate in an OspC variant-dependent manner. Murine infection by isogenic B. burgdorferi strains differing only in their ospC coding region revealed that two OspC variants capable of binding dermatan sulfate promoted colonization of all tissues tested, including joints. However, an isogenic strain producing OspC from B. garinii strain PBr, which binds fibronectin but not dermatan sulfate, colonized the skin, heart and bladder, but not joints. Moreover, a strain producing an OspC altered to recognize neither fibronectin nor dermatan sulfate displayed dramatically reduced levels of tissue colonization that were indistinguishable from a strain entirely deficient in OspC. Finally, intravital microscopy revealed that this OspC mutant, in contrast to a strain producing wild type OspC, was defective in promoting joint invasion by B. burgdorferi in living mice. We conclude that OspC functions as an ECM-binding adhesin that is required for joint invasion, and that variation in OspC sequence contributes to strain-specific differences in tissue tropism displayed among Lyme disease spirochetes.


Asunto(s)
Borrelia burgdorferi/metabolismo , Dermatán Sulfato/metabolismo , Matriz Extracelular/metabolismo , Artropatías/metabolismo , Articulaciones/metabolismo , Enfermedad de Lyme/metabolismo , Animales , Antígenos Bacterianos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidad , Dermatán Sulfato/genética , Matriz Extracelular/genética , Matriz Extracelular/microbiología , Matriz Extracelular/patología , Femenino , Fibronectinas/genética , Fibronectinas/metabolismo , Artropatías/genética , Artropatías/microbiología , Artropatías/patología , Articulaciones/microbiología , Articulaciones/patología , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ratones , Ratones SCID , Mutación , Especificidad de Órganos
15.
Mol Ecol ; 31(9): 2698-2711, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35231145

RESUMEN

A vector's susceptibility and ability to transmit a pathogen-termed vector competency-determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


Asunto(s)
Ixodes , Lagartos , Enfermedad de Lyme , Animales , Aves , Vectores de Enfermedades , Expresión Génica , Ixodes/genética , Larva/genética , Lagartos/genética , Enfermedad de Lyme/genética , Ratones , Ninfa/genética , Roedores
16.
Biomacromolecules ; 23(1): 34-46, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34793129

RESUMEN

The black-legged tick (Ixodes scapularis) is the primary vector for bacteria that cause Lyme disease (Borrelia burgdorferi), where numerous glycosylated tick proteins are involved at the interface of vector-host-pathogen interactions. Reducing the expression of key tick proteins, such as selenoprotein K (SelK), through RNA interference is a promising approach to reduce pathogen transmission, but efficient delivery of nucleic acids to arthropods has proven challenging. While cationic glycopolymers have been used as nonviral gene delivery vehicles in mammalian cells, their use in arthropod or insect gene transfection has not been established. In this study, statistical acrylamide-based cationic glycopolymers with glucose or galactose pendant groups were synthesized by reversible addition-fragmentation chain transfer polymerization, and the effects of the saccharide pendant group and cationic monomer loading on polymer cytotoxicity, RNA complexation, and SelK gene knockdown in ISE6 cells were evaluated. All polymers exhibited low cytotoxicity, yet RNA/copolymer complex cell uptake and gene knockdown were highly dependent on the saccharide structure and the N:P (amino to phosphate groups) ratio.


Asunto(s)
Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Animales , Proteínas de Artrópodos/metabolismo , Borrelia burgdorferi/metabolismo , Ixodes/genética , Ixodes/metabolismo , Ixodes/microbiología , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Interferencia de ARN
17.
J Immunol ; 205(12): 3383-3389, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33168577

RESUMEN

Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the bite of an infected tick. Once inoculated into the host dermis, it disseminates to various organs including distant skin sites, the heart, the joint and the nervous system. Most humans will develop an early skin manifestation called erythema migrans at the tick bite site. This can be followed by symptoms such as carditis, neuritis, meningitis, or arthritis if not treated. A specific mouse strain, C3H/HeN develops arthritis with B. burgdorferi infection whereas another strain, C57BL/6, develops minimal to no arthritis. Neither strain of mice show any skin signs of rash or inflammation. Factors that determine the presence of skin inflammation and the joint arthritis susceptibility in the host are only partially characterized. We show in this study that murine fibroblast-like synoviocytes display trained immunity, a program in some cells that results in increased inflammatory responses if the cell has previously come in contact with a stimulus, and that trained immunity in fibroblast-like synoviocytes tested ex vivo correlates with Lyme arthritis susceptibility. Conversely, skin fibroblasts do not exhibit trained immunity, which correlates with the absence of skin symptoms in these mice. Moreover, we demonstrate that the trained phenotype in FLS is affected by the cell environment, which depends on the host genetic background. Future studies expanding this initial report of the role of trained immunity on symptoms of B. burgdorferi infection may provide insight into the pathogenesis of disease in murine models.


Asunto(s)
Artritis/inmunología , Borrelia burgdorferi/inmunología , Inmunidad Innata , Memoria Inmunológica , Enfermedad de Lyme/inmunología , Sinoviocitos/inmunología , Animales , Artritis/genética , Artritis/patología , Femenino , Inflamación/inmunología , Inflamación/patología , Enfermedad de Lyme/genética , Enfermedad de Lyme/patología , Ratones , Ratones Noqueados , Sinoviocitos/patología
18.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628370

RESUMEN

MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in many biological processes, including the immune pathways that control bacterial, parasitic, and viral infections. Pathogens probably modify host miRNAs to facilitate successful infection, so they might be useful targets for vaccination strategies. There are few data on differentially expressed miRNAs in the black-legged tick Ixodes scapularis after infection with Borrelia burgdorferi, the causative agent of Lyme disease in the United States. Small RNA sequencing and qRT-PCR analysis were used to identify and validate differentially expressed I. scapularis salivary miRNAs. Small RNA-seq yielded 133,465,828 (≥18 nucleotides) and 163,852,135 (≥18 nucleotides) small RNA reads from Borrelia-infected and uninfected salivary glands for downstream analysis using the miRDeep2 algorithm. As such, 254 miRNAs were identified across all datasets, 25 of which were high confidence and 51 low confidence known miRNAs. Further, 23 miRNAs were differentially expressed in uninfected and infected salivary glands: 11 were upregulated and 12 were downregulated upon pathogen infection. Gene ontology and network analysis of target genes of differentially expressed miRNAs predicted roles in metabolic, cellular, development, cellular component biogenesis, and biological regulation processes. Several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including sphingolipid metabolism; valine, leucine and isoleucine degradation; lipid transport and metabolism; exosome biogenesis and secretion; and phosphate-containing compound metabolic processes, were predicted as targets of differentially expressed miRNAs. A qRT-PCR assay was utilized to validate the differential expression of miRNAs. This study provides new insights into the miRNAs expressed in I. scapularis salivary glands and paves the way for their functional manipulation to prevent or treat B. burgdorferi infection.


Asunto(s)
Ixodes , Enfermedad de Lyme , MicroARNs , Animales , Vectores de Enfermedades , Ixodes/genética , Enfermedad de Lyme/genética , MicroARNs/genética , Nucleótidos
19.
J Infect Dis ; 224(2): 345-350, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33216133

RESUMEN

Unrecognized immunodeficiency has been proposed as a possible cause of failure of antibiotics to resolve symptoms of Lyme disease. Here, we examined the efficacy of doxycycline in different immunodeficient mice to identify defects that impair antibiotic treatment outcomes. We found that doxycycline had significantly lower efficacy in the absence of adaptive immunity, specifically B cells. This effect was most pronounced in immunodeficient C3H mice compared with C57BL/6 mice, suggesting a role for genetic background beyond immunodeficiency. Addition of a single dose of ceftriaxone to doxycycline treatment effectively cleared infection in C3H mice with severe combined immunodeficiency.


Asunto(s)
Antibacterianos , Antecedentes Genéticos , Síndromes de Inmunodeficiencia , Enfermedad de Lyme , Animales , Antibacterianos/uso terapéutico , Borrelia burgdorferi , Doxiciclina , Síndromes de Inmunodeficiencia/genética , Enfermedad de Lyme/tratamiento farmacológico , Enfermedad de Lyme/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
20.
FASEB J ; 34(2): 2840-2852, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908031

RESUMEN

Eicosanoids are powerful mediators of inflammation and are known to drive both the progression and regression of arthritis. We previously reported the infection of C3H 5-lipoxygenase (LO)-deficient mice with Borrelia burgdorferi results in prolonged nonresolving Lyme arthritis. Here we define the role of the 5-LO metabolite leukotriene (LT)B4 and its high-affinity receptor, BLT1, in this response. C3H and C3H BLT1-/- mice were infected with B. burgdorferi and arthritis progression was monitored by ankle swelling over time. Similar to 5-LO-/- mice, BLT1-/- mice developed nonresolving Lyme arthritis characterized by increased neutrophils in the joint at later time points than WT mice, but with fewer apoptotic (caspase-3+ ) neutrophils. In vitro, BLT1-/- neutrophils were defective in their ability to undergo apoptosis due to the lack of LTB4 -mediated down-regulation of cAMP, subsequent failure to induce Death-Inducing Signaling Complex (DISC) components, and decreased FasL and CD36 expression. Inhibition of adenylyl cyclase with SQ 22,536 restored BLT1-/- BMN apoptosis, FasL and CD36 expression, and clearance by macrophages. We conclude that LTB4/BLT1 signaling has an unexpected critical role in mediating neutrophil apoptosis via the down-regulation of cAMP. Loss of BLT1 signaling led to defective clearance of neutrophils from the inflamed joint and failed arthritis resolution.


Asunto(s)
Apoptosis , Borrelia burgdorferi/metabolismo , Enfermedad de Lyme/metabolismo , Neutrófilos/metabolismo , Receptores de Leucotrieno B4/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Enfermedad de Lyme/genética , Enfermedad de Lyme/patología , Ratones , Ratones Noqueados , Neutrófilos/patología , Receptores de Leucotrieno B4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA