RESUMEN
BACKGROUND: Niemann-Pick disease type C is a rare lysosomal storage disorder. We evaluated the safety and efficacy of N-acetyl-l-leucine (NALL), an agent that potentially ameliorates lysosomal and metabolic dysfunction, for the treatment of Niemann-Pick disease type C. METHODS: In this double-blind, placebo-controlled, crossover trial, we randomly assigned patients 4 years of age or older with genetically confirmed Niemann-Pick disease type C in a 1:1 ratio to receive NALL for 12 weeks, followed by placebo for 12 weeks, or to receive placebo for 12 weeks, followed by NALL for 12 weeks. NALL or matching placebo was administered orally two to three times per day, with patients 4 to 12 years of age receiving weight-based doses (2 to 4 g per day) and those 13 years of age or older receiving a dose of 4 g per day. The primary end point was the total score on the Scale for the Assessment and Rating of Ataxia (SARA; range, 0 to 40, with lower scores indicating better neurologic status). Secondary end points included scores on the Clinical Global Impression of Improvement, the Spinocerebellar Ataxia Functional Index, and the Modified Disability Rating Scale. Crossover data from the two 12-week periods in each group were included in the comparisons of NALL with placebo. RESULTS: A total of 60 patients 5 to 67 years of age were enrolled. The mean baseline SARA total scores used in the primary analysis were 15.88 before receipt of the first dose of NALL (60 patients) and 15.68 before receipt of the first dose of placebo (59 patients; 1 patient never received placebo). The mean (±SD) change from baseline in the SARA total score was -1.97±2.43 points after 12 weeks of receiving NALL and -0.60±2.39 points after 12 weeks of receiving placebo (least-squares mean difference, -1.28 points; 95% confidence interval, -1.91 to -0.65; P<0.001). The results for the secondary end points were generally supportive of the findings in the primary analysis, but these were not adjusted for multiple comparisons. The incidence of adverse events was similar with NALL and placebo, and no treatment-related serious adverse events occurred. CONCLUSIONS: Among patients with Niemann-Pick disease type C, treatment with NALL for 12 weeks led to better neurologic status than placebo. A longer period is needed to determine the long-term effects of this agent in patients with Niemann-Pick disease type C. (Funded by IntraBio; ClinicalTrials.gov number, NCT05163288; EudraCT number, 2021-005356-10.).
Asunto(s)
Fármacos del Sistema Nervioso Central , Enfermedad de Niemann-Pick Tipo C , Humanos , Recolección de Datos , Método Doble Ciego , Leucina/análogos & derivados , Leucina/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/complicaciones , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Resultado del Tratamiento , Estudios Cruzados , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/uso terapéuticoRESUMEN
Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.
Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Enfermedad de Niemann-Pick Tipo C , Humanos , Proteostasis , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Pliegue de Proteína , ProteolisisRESUMEN
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.
Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Niemann-Pick Tipo C , Ratones , Animales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteómica/métodos , ProteínasRESUMEN
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a compound currently under investigation in clinical trials. A total of 485 HPßCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of plasma from Npc1m1N null mice treated with HPßCD and adeno-associated virus gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPßCD treatment.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Biomarcadores , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , TranscriptomaRESUMEN
PURPOSE: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal disorder caused by pathogenic variants in NPC1. Disease progression is monitored using the NPC Neurological Severity Scale, but there are currently no established validated or qualified biomarkers. Neurofilament light chain (NfL) is being investigated as a biomarker in multiple neurodegenerative diseases. METHODS: Cross-sectional and longitudinal cerebrospinal fluid (CSF) samples were obtained from 116 individuals with NPC1. NfL levels were measured using a solid-phase sandwich enzyme-linked immunosorbent assay and compared with age-appropriate non-NPC1 comparison samples. RESULTS: Median levels of NfL were elevated at baseline (1152 [680-1840] pg/mL) in NPC1 compared with controls (167 [82-372] pg/mL; P < .001). Elevated NfL levels were associated with more severe disease as assessed by both the 17-domain and 5-domain NPC Neurological Severity Score. Associations were also observed with ambulation, fine motor, speech, and swallowing scores. Although treatment with the investigational drug 2-hydroxypropyl-ß-cyclodextrin (adrabetadex) did not decrease CSF NfL levels, miglustat therapy over time was associated with a decrease (odds ratio = 0.77, 95% CI = 0.62-0.96). CONCLUSION: CSF NfL levels are increased in individuals with NPC1, associated with clinical disease severity, and decreased with miglustat therapy. These data suggest that NfL is a biomarker that may have utility in future therapeutic trials.
Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Niemann-Pick Tipo C , Humanos , Filamentos Intermedios/patología , Estudios Transversales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/líquido cefalorraquídeo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , BiomarcadoresRESUMEN
BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive disorder due to pathological variants of NPC1. The NPC1 phenotype is characterized by progressive cerebellar ataxia and cognitive impairment. Although classically a childhood/adolescent disease, NPC1 is heterogeneous with respect to the age of onset of neurological signs and symptoms. While miglustat has shown to be clinically effective, there are currently no FDA approved drugs to treat NPC1. Identification and characterization of biomarkers may provide tools to facilitate therapeutic trials. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is a protein which is highly expressed by neurons and is a biomarker of neuronal damage. We thus measured cerebrospinal fluid (CSF) levels of UCHL1 in individuals with NPC1. METHODS: CSF levels of UCHL1 were measured using a Quanterix Neuroplex 4 assay in 94 individuals with NPC1 and 35 age-appropriate comparison samples. Cross-sectional and longitudinal CSF UCHL1 levels were then evaluated for correlation with phenotypic measures and treatment status. RESULTS: CSF UCHL1 levels were markedly elevated (3.3-fold) in individuals with NPC1 relative to comparison samples. The CSF UCHL1 levels showed statistically significant (adj p < 0.0001), moderate, positive correlations with both the 17- and 5-domain NPC Neurological Severity Scores and the Annual Severity Increment Scores. Miglustat treatment significantly decreased (adj p < 0.0001) CSF UCHL1 levels by 30% (95% CI 17-40%). CONCLUSIONS: CSF UCHL1 levels are elevated in NPC1, increase with increasing clinical severity and decrease in response to therapy with miglustat. Based on these data, UCHL1 may be a useful biomarker to monitor disease progression and therapeutic response in individuals with NPC1.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Adolescente , Niño , Humanos , Biomarcadores/metabolismo , Estudios Transversales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Fenotipo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/uso terapéuticoRESUMEN
Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3ß,5α,6ß-triol (3ß,5α,6ß-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3ß,5α,6ß-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Niemann-Pick Tipo C , Humanos , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/patología , Inhibidor 1 de Activador Plasminogénico , Factor de Crecimiento Derivado de Plaquetas , Biomarcadores , BecaplerminaRESUMEN
Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacología , Antioxidantes/farmacología , Colesterol , Citocinas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Ubiquinona/análogos & derivadosRESUMEN
Niemann-Pick type C disease is a rare autosomal recessive lysosomal disorder that leads to the accumulation of lipids in cellular organelles. Affected infants are often cholestatic with hepatosplenomegaly, developmental delay and may present in acute liver failure. Medical therapy has shown some promise in long-term studies, in patients with milder phenotypes of the disease. Liver transplantation has generally not been considered a therapeutic option due to the systemic nature of the condition, and frequent unremitting neurological decline leading to death. We report an infant with multisystem organ failure, and known Niemann-Pick C disease who was successfully transplanted and has maintained normal neurological outcomes now five years after transplantation. We highlight the need for multidisciplinary care in order to recognize different phenotypes that may exist, even in rare diseases, and to be aware of evolving therapeutic options.
Asunto(s)
Trasplante de Hígado , Enfermedad de Niemann-Pick Tipo C , Humanos , Lactante , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , FenotipoRESUMEN
While the neuropathological characteristics of Niemann-Pick disease type C (NPC) result in a fatal diagnosis, the development of clinically available therapeutic agent remains a challenge. Here we propose graphene quantum dots (GQDs) as a potential candidate for the impaired functions in NPC in vivo. In addition to the previous findings that GQDs exhibit negligible long-term toxicity and are capable of penetrating the blood-brain barrier, GQD treatment reduces the aggregation of cholesterol in the lysosome through expressed physical interactions. GQDs also promote autophagy and restore defective autophagic flux, which, in turn, decreases the atypical accumulation of autophagic vacuoles. More importantly, the injection of GQDs inhibits the loss of Purkinje cells in the cerebellum while also demonstrating reduced activation of microglia. The ability of GQDs to alleviate impaired functions in NPC proves the promise and potential of the use of GQDs toward resolving NPC and other related disorders.
Asunto(s)
Grafito , Enfermedad de Niemann-Pick Tipo C , Puntos Cuánticos , Autofagia , Humanos , Lisosomas , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológicoRESUMEN
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Asunto(s)
1-Desoxinojirimicina , Ciclodextrinas , Tamaño de los Órganos , Pregnanolona , Animales , Femenino , Masculino , Ratones , 1-Desoxinojirimicina/farmacología , Peso Corporal , Ciclodextrinas/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Pregnanolona/farmacología , Ratones NoqueadosRESUMEN
Niemann-Pick disease, type C1 is a progressive, lethal, neurodegenerative disorder due to endolysosomal storage of unesterified cholesterol. Cerebellar ataxia, as a result of progressive loss of cerebellar Purkinje neurons, is a major symptom of Nieman-Pick disease, type C1. Comparing single cell RNAseq data from control (Npc1+/+) and mutant (Npc1-/-) mice, we observed significantly decreased expression of Slc1a3 in Npc1-/- astrocytes. Slc1a3 encodes a glutamate transporter (GLAST, EAAT1) which functions to decrease glutamate concentrations in the post synaptic space after neuronal firing. Glutamate is an excitatory neurotransmitter and elevated extracellular levels of glutamate can be neurotoxic. Impaired EAAT1 function underlies type-6 episodic ataxia, a rare disorder with progressive cerebellar dysfunction, thus suggesting that impaired glutamate uptake in Niemann-Pick disease, type C1 could contribute to disease progression. We now show that decreased expression of Slc1a3 in Npc1-/- mice has functional consequences that include decreased surface protein expression and decreased glutamate uptake by Npc1-/- astrocytes. To test whether glutamate neurotoxicity plays a role in Niemann-Pick disease, type C1 progression, we treated NPC1 deficient mice with ceftriaxone and riluzole. Ceftriaxone is a ß-lactam antibiotic that is known to upregulate the expression of Slc1a2, an alternative glial glutamate transporter. Although ceftriaxone increased Slc1a2 expression, we did not observe a treatment effect in NPC1 mutant mice. Riluzole is a glutamate receptor antagonist that inhibits postsynaptic glutamate receptor signaling and reduces the release of glutamate. We found that treatment with riluzole increased median survival in Npc1-/- by 12%. Given that riluzole is an approved drug for the treatment of amyotrophic lateral sclerosis, repurposing of this drug may provide a novel therapeutic approach to decrease disease progression in Niemann-Pick disease type, C1 patients.
Asunto(s)
Ceftriaxona/uso terapéutico , Ácido Glutámico/toxicidad , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Riluzol/uso terapéutico , Animales , Astrocitos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Transportador 1 de Aminoácidos Excitadores/fisiología , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Niemann-Pick C1/fisiologíaRESUMEN
BACKGROUND: Niemann-Pick Disease Type C (NPC) is an ultra-rare progressive neurodegenerative disease caused by autosomal recessive mutations in the NPC1 or NPC2 genes that lead to premature death, with most individuals dying between 10 and 25 years of age. NPC can present at any age and many individuals with NPC may be misdiagnosed or undiagnosed. A key challenge with recognizing NPC is the heterogeneous and nonspecific clinical presentation. Currently, there are no approved treatments for NPC in the United States; miglustat, an FDA-approved treatment for Gaucher disease, is used off-label for NPC and GM1 gangliosidosis. OBJECTIVES: To estimate the number of people in the United States that 1) have an NPC diagnosis 2) have an NPC diagnosis and/or are treated off-label with miglustat for NPC and 3) are likely to have NPC. METHODS: For the first two objectives, patients were identified using the Symphony Integrated DataVerse database (Oct 2015-Jan 2020). To identify the number of people with NPC for Objective 1, cases of NPC were defined as any patients with an ICD-10 code of E75.242 (NPC) during the study period. Objective 2 expands upon Objective 1, including (a) patients from Objective 1 and (b) patients with documented miglustat use (NDC 43975-0310 or 10,148-0201) who did not have any claim with Gaucher disease (ICD-10 E75.22) or GM1 gangliosidosis (ICD-10 E75.1) during the study period. For the third objective, published NPC incidence (1 per 89,000 live births) and expected mortality estimates were applied to the 2018 United States birth rate (11.6 per 1000) and population size (326.7 million). RESULTS: A total of 308 million unique individuals were represented in the database. Of these, 294 individuals had an NPC diagnosis, yielding an identified NPC prevalence of 0.95 per million people in the United States. 305 individuals were diagnosed with NPC and/or were treated with miglustat without having a diagnosis for either Gaucher or GM1 gangliosidosis, yielding an NPC diagnosed or treated prevalence of 0.99 per million people in the United States. Based on the published literature, there are an estimated 42 new NPC cases per year. Applying this number to the distribution of NPC type (based on age of neurologic symptom onset) and corresponding mortality estimates generates an estimated 943 prevalent cases of NPC, or 2.9 cases of NPC per million people in the United States. CONCLUSIONS: NPC is an ultra-rare, progressive neurodegenerative disease with approximately 1 per million people in the United States diagnosed with or treated off-label for NPC. Given that NPC is often misdiagnosed or undiagnosed, the estimated prevalence from the epidemiology calculations (2.9 per million) approximates the number of NPC cases if disease awareness, screening and diagnosis efforts were enhanced.
Asunto(s)
Enfermedades Neurodegenerativas/epidemiología , Enfermedad de Niemann-Pick Tipo C/epidemiología , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapéutico , Adolescente , Adulto , Proteínas Portadoras/genética , Niño , Preescolar , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Enfermedades Neurodegenerativas/clasificación , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Prevalencia , Estudios Retrospectivos , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Niemann-Pick disease type C (NPC) is a rare, genetic, progressive neurodegenerative disorder with high unmet medical need. We investigated the safety and efficacy of arimoclomol, which amplifies the heat shock response to target NPC protein misfolding and improve lysosomal function, in patients with NPC. In a 12-month, prospective, randomised, double-blind, placebo-controlled, phase 2/3 trial (ClinicalTrials.gov identifier: NCT02612129), patients (2-18 years) were randomised 2:1 to arimoclomol:placebo, stratified by miglustat use. Routine clinical care was maintained. Arimoclomol was administered orally three times daily. The primary endpoint was change in 5-domain NPC Clinical Severity Scale (NPCCSS) score from baseline to 12 months. Fifty patients enrolled; 42 completed. At month 12, the mean progression from baseline in the 5-domain NPCCSS was 0.76 with arimoclomol vs 2.15 with placebo. A statistically significant treatment difference in favour of arimoclomol of -1.40 (95% confidence interval: -2.76, -0.03; P = .046) was observed, corresponding to a 65% reduction in annual disease progression. In the prespecified subgroup of patients receiving miglustat as routine care, arimoclomol resulted in stabilisation of disease severity over 12 months with a treatment difference of -2.06 in favour of arimoclomol (P = .006). Adverse events occurred in 30/34 patients (88.2%) receiving arimoclomol and 12/16 (75.0%) receiving placebo. Fewer patients had serious adverse events with arimoclomol (5/34, 14.7%) vs placebo (5/16, 31.3%). Treatment-related serious adverse events (n = 2) included urticaria and angioedema. Arimoclomol provided a significant and clinically meaningful treatment effect in NPC and was well tolerated.
Asunto(s)
Hidroxilaminas/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Adolescente , Niño , Preescolar , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Hidroxilaminas/efectos adversos , Internacionalidad , Masculino , Enfermedad de Niemann-Pick Tipo C/genética , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Adulto JovenRESUMEN
Objectives. We aim to report the clinical repercussions of a nutritional approach in a patient diagnosed with Niemann Pick disease type C (NPC) using miglustat as pharmacological therapy. Case report. A 33-year-old woman diagnosed with NPC using miglustat was instructed to look for a dietary management at our nutrition service. Patient's symptoms were weight loss and important gastrointestinal alterations. Our nutritional prescription was a high-calorie and high-protein, lactose- and sucrose-free diet, as well as a daily supplementation of L-glutamine, probiotics, omega 3, and coenzyme Q10. After two months, the patient had weight gain and improvement in the intestinal health. Conclusions. We found that nutritional prescription aided in the treatment of NPC and revealed that nutritional care represents an important strategy in the management of rare genetic diseases.
Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Adulto , Femenino , Humanos , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológicoRESUMEN
BACKGROUND: Colorectal cancer (CRC) is a malignancy of the large intestine, whose development and prognosis have been demonstrated to be associated with altered lipid metabolism. High cholesterol intake is associated with an increased risk of CRC, and elevated serum cholesterol levels are known to be correlated with risk of developing CRC. Niemann-Pick C1-Like 1 (NPC1L1), a target of ezetimibe, plays an essential role in the absorption of intestinal cholesterol. However, whether the altered expression of NPC1L1 affects CRC development and prognosis is currently unknown. METHODS: Data corresponding to patients with CRC were obtained from The Cancer Genome Atlas (TCAG). Datasets from the Genome Data Analysis Center (GDAC) platform were analyzed to compare the expression of NPC1L1 in normal and CRC tissues using the Mann-Whitney U test and chi-square test. Further, the datasets from the Gene Expression Omnibus (GEO) database were analyzed. The log-rank test and multivariate Cox proportional hazard regression analysis were performed to determine whether NPC1L1 significantly affects the prognosis of CRC. RESULTS: The expression of NPC1L1 was found to be upregulated in CRC and was significantly associated with the N and pathological stages but not with the histological type, age, and sex. Increased NPC1L1 expression in CRC was related to poor patient survival, as evidenced by the Kaplan-Meier and multivariate regression analyses. CONCLUSIONS: As high expression of NPC1L1 was associated with CRC development, pathological stage, and prognosis, NPC1L1 can serve as an independent prognostic marker for CRC.
Asunto(s)
Biomarcadores de Tumor/genética , Colesterol/sangre , Neoplasias Colorrectales/genética , Proteínas de Transporte de Membrana/genética , Enfermedad de Niemann-Pick Tipo C/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticolesterolemiantes/uso terapéutico , Atlas como Asunto , Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Conjuntos de Datos como Asunto , Ezetimiba/uso terapéutico , Femenino , Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Proteínas de Transporte de Membrana/sangre , Persona de Mediana Edad , Estadificación de Neoplasias , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/mortalidad , Pronóstico , Modelos de Riesgos Proporcionales , Factores Sexuales , Análisis de SupervivenciaRESUMEN
Niemann-Pick disease type C (NPC) is a rare, autosomal recessive neurodegenerative disease, characterized by progressive psychiatric and neurological deficits. Neurological symptoms include cognitive decline and dysphagia. Aspiration pneumonia secondary to dysphagia is a leading cause of death in NPC. Miglustat is currently the only approved disease-specific treatment shown to be effective in stabilizing neurological symptoms. Miglustat has previously been reported to halt or improve early dysphagia and cognitive symptoms. Here we examine the characteristics of dysphagia, the relationship between dysphagia and the presence of cognitive impairment, and longitudinal changes in swallowing function during miglustat treatment in adult-and-adolescent-onset NPC. Retrospective analysis of videofluoroscopic swallow studies (VFSS) was completed for ten adults with NPC (mean age 28.44 years ± 9.34 years). Participants were recruited through the Royal Melbourne Hospital in Australia between 2008 and 2015. The Bethlehem Swallowing Scale and the Penetration-Aspiration Scale were used to quantify VFSS data. Dysphagia was present in 90% of participants at baseline with reduced lingual function and a delayed swallowing reflex as the most common symptoms. Swallow impairment appeared to stabilize during miglustat therapy for periods up to 66 months, with no significant changes in scores (p > 0.05). Data were in accordance with the literature and support the use of miglustat as an efficacious treatment for reducing swallowing impairment and stabilizing cognitive function. Findings provide detailed information on the impairments experienced by patients, give context to events leading to aspiration in NPC and, importantly, inform how management of dysphagia can complement pharmaceutical treatment.
Asunto(s)
Trastornos de Deglución , Enfermedades Neurodegenerativas , Enfermedad de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Adolescente , Adulto , Deglución , Trastornos de Deglución/tratamiento farmacológico , Trastornos de Deglución/etiología , Inhibidores Enzimáticos , Humanos , Enfermedad de Niemann-Pick Tipo C/complicaciones , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Estudios RetrospectivosRESUMEN
Niemann-Pick type C (NPC) disease is a rare autosomal recessive inherited childhood neurodegenerative disease characterized by the accumulation of cholesterol and glycosphingolipids, involving the autophagy-lysosome system. Inhibition of soluble epoxide hydrolase (sEH), an enzyme that metabolizes epoxy fatty acids (EpFAs) to 12-diols, exerts beneficial effects in modulating inflammation and autophagy, critical features of the NPC disease. This study aims to evaluate the effects of UB-EV-52, an sEH inhibitor (sEHi), in an NPC mouse model (Npc) by administering it for 4 weeks (5 mg/kg/day). Behavioral and cognitive tests (open-field test (OF)), elevated plus maze (EPM), novel object recognition test (NORT) and object location test (OLT) demonstrated that the treatment produced an improvement in short- and long-term memory as well as in spatial memory. Furthermore, UB-EV-52 treatment increased body weight and lifespan by 25% and reduced gene expression of the inflammatory markers (i.e., Il-1ß and Mcp1) and enhanced oxidative stress (OS) markers (iNOS and Hmox1) in the treated Npc mice group. As for autophagic markers, surprisingly, we found significantly reduced levels of LC3B-II/LC3B-I ratio and significantly reduced brain protein levels of lysosomal-associated membrane protein-1 (LAMP-1) in treated Npc mice group compared to untreated ones in hippocampal tissue. Lipid profile analysis showed a significant reduction of lipid storage in the liver and some slight changes in homogenated brain tissue in the treated NPC mice compared to the untreated groups. Therefore, our results suggest that pharmacological inhibition of sEH ameliorates most of the characteristic features of NPC mice, demonstrating that sEH can be considered a potential therapeutic target for this disease.
Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Animales , Autofagia , Cognición , Femenino , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , FenotipoRESUMEN
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1-/- mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1-/- and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1-/- mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1-/- mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1-/- mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1-/- mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1-/- mice was almost completely reduced only in the female groups.
Asunto(s)
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , 1-Desoxinojirimicina/farmacología , Animales , Ciclodextrinas/farmacología , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Pregnanolona/farmacologíaRESUMEN
Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in ß-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.