Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.584
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(6): 1212-1229.e21, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36827974

RESUMEN

Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments.


Asunto(s)
Mitocondrias , Organogénesis , Animales , Femenino , Humanos , Ratones , Embarazo , Linaje de la Célula , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales , Especificidad de Órganos , Desarrollo Embrionario , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
2.
Cell ; 185(10): 1764-1776.e12, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35472302

RESUMEN

Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Animales , Sistemas CRISPR-Cas , Citosina/metabolismo , ADN Mitocondrial/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Purinas
3.
Nat Rev Mol Cell Biol ; 25(1): 65-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773518

RESUMEN

Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.


Asunto(s)
Enfermedades Mitocondriales , Proteoma , Animales , Humanos , Proteoma/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Orgánulos/metabolismo , Enfermedades Mitocondriales/metabolismo , Espectrometría de Masas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mamíferos/metabolismo
4.
Annu Rev Biochem ; 89: 471-499, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31935115

RESUMEN

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
5.
Cell ; 181(1): 168-188, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32220313

RESUMEN

Mitochondrial diseases are clinically heterogeneous disorders caused by a wide spectrum of mutations in genes encoded by either the nuclear or the mitochondrial genome. Treatments for mitochondrial diseases are currently focused on symptomatic management rather than improving the biochemical defect caused by a particular mutation. This review focuses on the latest advances in the development of treatments for mitochondrial disease, both small molecules and gene therapies, as well as methods to prevent transmission of mitochondrial disease through the germline.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/terapia , Animales , ADN Mitocondrial/genética , Terapia Genética , Genoma Mitocondrial/genética , Humanos , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Mutación , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
Nat Immunol ; 22(11): 1367-1374, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686862

RESUMEN

Group 2 innate lymphoid cells (ILC2s) represent innate homologs of type 2 helper T cells (TH2) that participate in immune defense and tissue homeostasis through production of type 2 cytokines. While T lymphocytes metabolically adapt to microenvironmental changes, knowledge of human ILC2 metabolism is limited, and its key regulators are unknown. Here, we show that circulating 'naive' ILC2s have an unexpected metabolic profile with a higher level of oxidative phosphorylation (OXPHOS) than natural killer (NK) cells. Accordingly, ILC2s are severely reduced in individuals with mitochondrial disease (MD) and impaired OXPHOS. Metabolomic and nutrient receptor analysis revealed ILC2 uptake of amino acids to sustain OXPHOS at steady state. Following activation with interleukin-33 (IL-33), ILC2s became highly proliferative, relying on glycolysis and mammalian target of rapamycin (mTOR) to produce IL-13 while continuing to fuel OXPHOS with amino acids to maintain cellular fitness and proliferation. Our results suggest that proliferation and function are metabolically uncoupled in human ILC2s, offering new strategies to target ILC2s in disease settings.


Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Metabolismo Energético , Inmunidad Innata , Activación de Linfocitos , Enfermedades Mitocondriales/metabolismo , Células Th2/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Arginina/metabolismo , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Interleucina-33/farmacología , Activación de Linfocitos/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/inmunología , Fenotipo , Células Th2/efectos de los fármacos , Células Th2/inmunología
7.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36893757

RESUMEN

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.


Asunto(s)
Hiperoxia , Enfermedades Mitocondriales , Animales , Humanos , Ratones , Complejo I de Transporte de Electrón/metabolismo , Hiperoxia/metabolismo , Hiperoxia/patología , Pulmón/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Oxígeno/metabolismo
8.
Nat Rev Mol Cell Biol ; 19(2): 77-92, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28792006

RESUMEN

Mitochondrial diseases affect one in 2,000 individuals; they can present at any age and they can manifest in any organ. How defects in mitochondria can cause such a diverse range of human diseases remains poorly understood. Insight into this diversity is emerging from recent research that investigated defects in mitochondrial protein synthesis and mitochondrial DNA maintenance, which showed that many cell-specific stress responses are induced in response to mitochondrial dysfunction. Studying the molecular regulation of these stress responses might increase our understanding of the pathogenesis and variability of human mitochondrial diseases.


Asunto(s)
Mitocondrias/fisiología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/fisiología , Humanos , Orgánulos/patología , Orgánulos/fisiología , Estrés Oxidativo
9.
Nat Rev Mol Cell Biol ; 19(2): 71-72, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29358685

RESUMEN

Mitochondrial DNA is maternally inherited, and pathogenic mutations cause a range of life-limiting conditions. Recent studies indicate that transmission of pathogenic mutations may be prevented by reproductive technologies designed to replace the mitochondria in eggs from affected women.


Asunto(s)
Enfermedades Mitocondriales/terapia , Terapia de Reemplazo Mitocondrial/métodos , Terapia de Reemplazo Mitocondrial/tendencias , Animales , ADN Mitocondrial/metabolismo , Femenino , Humanos , Mitocondrias/genética , Mutación/genética
10.
Nat Rev Mol Cell Biol ; 19(2): 109-120, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29165426

RESUMEN

Mitochondrial function declines during ageing owing to the accumulation of deleterious mitochondrial genomes and damage resulting from the localized generation of reactive oxygen species, both of which are often exacerbated in diseases such as Parkinson disease. Cells have several mechanisms to assess mitochondrial function and activate a transcriptional response known as the mitochondrial unfolded protein response (UPRmt) when mitochondrial integrity and function are impaired. The UPRmt promotes cell survival and the recovery of the mitochondrial network to ensure optimal cellular function. Recent insights into the regulation, mechanisms and functions of the UPRmt have uncovered important and complex links to ageing and ageing-associated diseases. In this Review, we discuss the signal transduction mechanisms that regulate the UPRmt and the physiological consequences of its activation that affect cellular and organismal health during ageing.


Asunto(s)
Mitocondrias/fisiología , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Envejecimiento/fisiología , Animales , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Mutación/genética , Enfermedad de Parkinson/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
11.
Cell ; 161(3): 459-469, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910206

RESUMEN

Mitochondrial diseases include a group of maternally inherited genetic disorders caused by mutations in mtDNA. In most of these patients, mutated mtDNA coexists with wild-type mtDNA, a situation known as mtDNA heteroplasmy. Here, we report on a strategy toward preventing germline transmission of mitochondrial diseases by inducing mtDNA heteroplasmy shift through the selective elimination of mutated mtDNA. As a proof of concept, we took advantage of NZB/BALB heteroplasmic mice, which contain two mtDNA haplotypes, BALB and NZB, and selectively prevented their germline transmission using either mitochondria-targeted restriction endonucleases or TALENs. In addition, we successfully reduced human mutated mtDNA levels responsible for Leber's hereditary optic neuropathy (LHOND), and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), in mammalian oocytes using mitochondria-targeted TALEN (mito-TALENs). Our approaches represent a potential therapeutic avenue for preventing the transgenerational transmission of human mitochondrial diseases caused by mutations in mtDNA. PAPERCLIP.


Asunto(s)
Marcación de Gen , Enfermedades Mitocondriales/genética , Animales , Fusión Celular , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NZB , Enfermedades Mitocondriales/prevención & control , Mutación , Oocitos/metabolismo
12.
Nature ; 628(8009): 844-853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570685

RESUMEN

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Asunto(s)
Alelos , ADN Polimerasa gamma , Virus de la Encefalitis Transmitidos por Garrapatas , Herpesvirus Humano 1 , Tolerancia Inmunológica , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Ratones , Edad de Inicio , COVID-19/inmunología , COVID-19/virología , COVID-19/genética , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/inmunología , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Mutación , ARN Mitocondrial/inmunología , ARN Mitocondrial/metabolismo , SARS-CoV-2/inmunología
13.
Cell ; 157(7): 1591-604, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949971

RESUMEN

Inherited mtDNA diseases transmit maternally and cause severe phenotypes. Currently, there is no effective therapy or genetic screens for these diseases; however, nuclear genome transfer between patients' and healthy eggs to replace mutant mtDNAs holds promises. Considering that a polar body contains few mitochondria and shares the same genomic material as an oocyte, we perform polar body transfer to prevent the transmission of mtDNA variants. We compare the effects of different types of germline genome transfer, including spindle-chromosome transfer, pronuclear transfer, and first and second polar body transfer, in mice. Reconstructed embryos support normal fertilization and produce live offspring. Importantly, genetic analysis confirms that the F1 generation from polar body transfer possesses minimal donor mtDNA carryover compared to the F1 generation from other procedures. Moreover, the mtDNA genotype remains stable in F2 progeny after polar body transfer. Our preclinical model demonstrates polar body transfer has great potential to prevent inherited mtDNA diseases.


Asunto(s)
Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/prevención & control , Técnicas de Transferencia Nuclear , Oocitos/citología , Cuerpos Polares/trasplante , Animales , Humanos , Ratones , Modelos Animales , Cuerpos Polares/citología , Huso Acromático
14.
EMBO J ; 43(2): 168-195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212382

RESUMEN

Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.


Asunto(s)
Tejido Adiposo Pardo , Ataxia , Factores de Crecimiento de Fibroblastos , Enfermedades Mitocondriales , Debilidad Muscular , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacología , Enfermedades Mitocondriales/metabolismo , Termogénesis/genética , Ratones Endogámicos C57BL
15.
EMBO J ; 43(3): 362-390, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212381

RESUMEN

Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.


Asunto(s)
Insuficiencia Cardíaca , Enfermedades Mitocondriales , Humanos , NAD/metabolismo , FN-kappa B/metabolismo , Proteína Sequestosoma-1/genética , Homeostasis , Autofagia , Mononucleótido de Nicotinamida
16.
EMBO J ; 43(2): 225-249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177503

RESUMEN

Respiratory complex I (NADH:ubiquinone oxidoreductase) is essential for cellular energy production and NAD+ homeostasis. Complex I mutations cause neuromuscular, mitochondrial diseases, such as Leigh Syndrome, but their molecular-level consequences remain poorly understood. Here, we use a popular complex I-linked mitochondrial disease model, the ndufs4-/- mouse, to define the structural, biochemical, and functional consequences of the absence of subunit NDUFS4. Cryo-EM analyses of the complex I from ndufs4-/- mouse hearts revealed a loose association of the NADH-dehydrogenase module, and discrete classes containing either assembly factor NDUFAF2 or subunit NDUFS6. Subunit NDUFA12, which replaces its paralogue NDUFAF2 in mature complex I, is absent from all classes, compounding the deletion of NDUFS4 and preventing maturation of an NDUFS4-free enzyme. We propose that NDUFAF2 recruits the NADH-dehydrogenase module during assembly of the complex. Taken together, the findings provide new molecular-level understanding of the ndufs4-/- mouse model and complex I-linked mitochondrial disease.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Animales , Ratones , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedad de Leigh/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , NAD/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
17.
Nat Rev Genet ; 23(4): 199-214, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34857922

RESUMEN

Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Animales , ADN Mitocondrial/genética , Humanos , Mamíferos/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación
18.
Nature ; 606(7913): 382-388, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614220

RESUMEN

Mitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles1 and have linked their dysfunction to more than 150 distinct disorders2,3. Still, hundreds of mitochondrial proteins lack clear functions4, and the underlying genetic basis for approximately 40% of mitochondrial disorders remains unresolved5. Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Proteínas de Transporte de Catión , Proteínas de Ciclo Celular , Metabolismo Energético , Humanos , Espectrometría de Masas , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción , Proteínas de Unión al GTP rab5
19.
Annu Rev Cell Dev Biol ; 30: 357-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288115

RESUMEN

Mitochondria are ancient organelles evolved from bacteria. Over the course of evolution, the behavior of mitochondria inside eukaryotic cells has changed dramatically, and the corresponding machineries that control it are in most cases new inventions. The evolution of mitochondrial behavior reflects the necessity to create a dynamic compartment to integrate the myriad mitochondrial functions with the status of other endomembrane compartments, such as the endoplasmic reticulum, and with signaling pathways that monitor cellular homeostasis and respond to stress. Here we review what has been discovered about the molecular machineries that work together to control the collective behavior of mitochondria in cells, as well as their physiological roles in healthy and disease states.


Asunto(s)
Mitocondrias/fisiología , Recambio Mitocondrial/fisiología , Animales , ADN Mitocondrial/metabolismo , Dinaminas/fisiología , Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Homeostasis , Humanos , Metabolismo de los Lípidos , Proteínas Asociadas a Microtúbulos/fisiología , Enfermedades Mitocondriales/fisiopatología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Conformación Proteica , Transducción de Señal/fisiología
20.
Trends Biochem Sci ; 48(5): 463-476, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702698

RESUMEN

Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Humanos , Ubiquinona/metabolismo , Enfermedades Mitocondriales/metabolismo , Oxidación-Reducción , Ataxia/metabolismo , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA