Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.240
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Genet ; 39(7): 528-530, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024335

RESUMEN

Marine larvae have factored heavily in pursuits to understand the origin and evolution of animal life cycles. Recent comparisons of gene expression and chromatin state in different species of sea urchin and annelid show how evolutionary changes in embryonic gene regulation can lead to markedly different larval forms.


Asunto(s)
Estadios del Ciclo de Vida , Erizos de Mar , Animales , Larva/genética , Estadios del Ciclo de Vida/genética , Erizos de Mar/genética
2.
Development ; 150(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607745

RESUMEN

Sea urchins and other echinoderms are important experimental models for studying developmental processes. The lack of approaches for conditional gene perturbation, however, has made it challenging to investigate the late developmental functions of genes that have essential roles during early embryogenesis and genes that have diverse functions in multiple tissues. The doxycycline-controlled Tet-On system is a widely used molecular tool for temporally and spatially regulated transgene expression. Here, we optimized the Tet-On system to conditionally induce gene expression in sea urchin embryos. Using this approach, we explored the roles the MAPK signaling plays in skeletogenesis by expressing genes that perturb the pathway specifically in primary mesenchyme cells during later stages of development. We demonstrated the wide utility of the Tet-On system by applying it to a second sea urchin species and in cell types other than the primary mesenchyme cells. Our work provides a robust and flexible platform for the spatiotemporal regulation of gene expression in sea urchins, which will considerably enhance the utility of this prominent model system.


Asunto(s)
Desarrollo Embrionario , Erizos de Mar , Animales , Erizos de Mar/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica
3.
Dev Biol ; 508: 123-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290645

RESUMEN

microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Embrión no Mamífero/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Transducción de Señal/genética , Redes Reguladoras de Genes , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/metabolismo
4.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345489

RESUMEN

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.


Asunto(s)
Presenilinas , Erizos de Mar , Humanos , Animales , Presenilinas/genética , Hibridación in Situ , Expresión Génica , Erizos de Mar/genética , Regulación del Desarrollo de la Expresión Génica
5.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35666622

RESUMEN

Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.


Asunto(s)
Lytechinus , Xenobióticos , Animales , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Erizos de Mar/genética
6.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399063

RESUMEN

Echinoderms represent a broad phylum with many tractable features to test evolutionary changes and constraints. Here, we present a single-cell RNA-sequencing analysis of early development in the sea star Patiria miniata, to complement the recent analysis of two sea urchin species. We identified 20 cell states across six developmental stages from 8 hpf to mid-gastrula stage, using the analysis of 25,703 cells. The clusters were assigned cell states based on known marker gene expression and by in situ RNA hybridization. We found that early (morula, 8-14 hpf) and late (blastula-to-mid-gastrula) cell states are transcriptionally distinct. Cells surrounding the blastopore undergo rapid cell state changes that include endomesoderm diversification. Of particular import to understanding germ cell specification is that we never see Nodal pathway members within Nanos/Vasa-positive cells in the region known to give rise to the primordial germ cells (PGCs). The results from this work contrast the results of PGC specification in the sea urchin, and the dataset presented here enables deeper comparative studies in tractable developmental models for testing a variety of developmental mechanisms.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Estrellas de Mar , Animales , Estrellas de Mar/genética , Erizos de Mar/genética , Células Germinativas/metabolismo , ARN/genética
7.
Dev Dyn ; 253(3): 333-350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698352

RESUMEN

BACKGROUND: Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS: During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS: p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.


Asunto(s)
Blastocisto , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/genética , Blastómeros , Desarrollo Embrionario/genética , Erizos de Mar/genética , Mamíferos
8.
Dev Biol ; 496: 52-62, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717049

RESUMEN

Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.


Asunto(s)
Cordados , Animales , Cordados/genética , Estrellas de Mar/genética , Larva/genética , Análisis de Expresión Génica de una Sola Célula , Erizos de Mar/genética
9.
Dev Biol ; 494: 13-25, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36519720

RESUMEN

Larvae of the sea urchin, Strongylocentrotus purpuratus, have pigmented migratory cells implicated in immune defense and gut patterning. The transcription factor SpGcm activates the expression of many pigment cell-specific genes, including those involved in pigment biosynthesis (SpPks1 and SpFmo3) and immune related genes (e.g. SpMif5). Despite the importance of this cell type in sea urchins, pigmented cells are absent in larvae of the sea star, Patiria miniata. In this study, we tested the premises that sea stars lack genes to synthesize echinochrome pigment, that the genes are present but are not expressed in the larvae, or rather that the homologous gene expression does not contribute to echinochrome synthesis. Our results show that orthologs of sea urchin pigment cell-specific genes (PmPks1, PmFmo3-1 and PmMifL1-2) are present in the sea star genome and expressed in the larvae. Although no cell lineage homologous to migratory sea urchin pigment cells is present, dynamic gene activation accomplishes a similar spatial and temporal expression profile. The mechanisms regulating the expression of these genes, though, is highly divergent. In sea stars, PmGcm lacks the central role in pigment gene expression since it is not expressed in PmPks1 and PmFmo3-1-positive cells, and knockdown of Gcm does not abrogate pigment gene expression. Pigment genes are instead expressed in the coelomic mesoderm early in development before later being expressed in the ectoderm. These findings were supported by in situ RNA hybridization and comparative scRNA-seq analyses. We conclude that simply the coexpression of Pks1 and Fmo3 orthologs in cells of the sea star is not sufficient to underlie the emergence of the larval pigment cell in the sea urchin.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Erizos de Mar , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Erizos de Mar/genética , Erizos de Mar/metabolismo , Estrellas de Mar/genética , Factores de Transcripción/metabolismo , ARN
10.
Dev Biol ; 495: 21-34, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587799

RESUMEN

Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 â€‹kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.


Asunto(s)
Proteínas de Drosophila , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Epitelio/metabolismo , Uniones Intercelulares/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Larva/genética , Larva/metabolismo
11.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37823438

RESUMEN

Chromatin accessibility plays an important role in shaping gene expression, yet little is known about the genetic and molecular mechanisms that influence the evolution of chromatin configuration. Both local (cis) and distant (trans) genetic influences can in principle influence chromatin accessibility and are based on distinct molecular mechanisms. We, therefore, sought to characterize the role that each of these plays in altering chromatin accessibility in 2 closely related sea urchin species. Using hybrids of Heliocidaris erythrogramma and Heliocidaris tuberculata, and adapting a statistical framework previously developed for the analysis of cis and trans influences on the transcriptome, we examined how these mechanisms shape the regulatory landscape at 3 important developmental stages, and compared our results to similar analyses of the transcriptome. We found extensive cis- and trans-based influences on evolutionary changes in chromatin, with cis effects generally larger in effect. Evolutionary changes in accessibility and gene expression are correlated, especially when expression has a local genetic basis. Maternal influences appear to have more of an effect on chromatin accessibility than on gene expression, persisting well past the maternal-to-zygotic transition. Chromatin accessibility near gene regulatory network genes appears to be distinctly regulated, with trans factors appearing to play an outsized role in the configuration of chromatin near these genes. Together, our results represent the first attempt to quantify cis and trans influences on evolutionary divergence in chromatin configuration in an outbred natural study system and suggest that chromatin regulation is more genetically complex than was previously appreciated.


Asunto(s)
Cromatina , Epigenoma , Animales , Cromatina/genética , Erizos de Mar/genética , Redes Reguladoras de Genes , Transcriptoma
12.
Genome Res ; 31(9): 1680-1692, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34330790

RESUMEN

We used capped analysis of gene expression with sequencing (CAGE-seq) to profile eRNA expression and enhancer activity during embryogenesis of a model echinoderm: the sea urchin, Strongylocentrotus purpuratus We identified more than 18,000 enhancers that were active in mature oocytes and developing embryos and documented a burst of enhancer activation during cleavage and early blastula stages. We found that a large fraction (73.8%) of all enhancers active during the first 48 h of embryogenesis were hyperaccessible no later than the 128-cell stage and possibly even earlier. Most enhancers were located near gene bodies, and temporal patterns of eRNA expression tended to parallel those of nearby genes. Furthermore, enhancers near lineage-specific genes contained signatures of inputs from developmental gene regulatory networks deployed in those lineages. A large fraction (60%) of sea urchin enhancers previously shown to be active in transgenic reporter assays was associated with eRNA expression. Moreover, a large fraction (50%) of a representative subset of enhancers identified by eRNA profiling drove tissue-specific gene expression in isolation when tested by reporter assays. Our findings provide an atlas of developmental enhancers in a model sea urchin and support the utility of eRNA profiling as a tool for enhancer discovery and regulatory biology. The data generated in this study are available at Echinobase, the public database of information related to echinoderm genomics.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Erizos de Mar , Animales , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Redes Reguladoras de Genes , Erizos de Mar/genética
13.
Development ; 148(7)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33688076

RESUMEN

Activation of Wnt/ß-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized, but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome, we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3ß-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a crucial conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


Asunto(s)
Proteína Axina/genética , Proteína Axina/metabolismo , Erizos de Mar/embriología , Erizos de Mar/genética , Erizos de Mar/fisiología , Animales , Blastómeros/metabolismo , Embrión no Mamífero/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lytechinus , Strongylocentrotus purpuratus , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
14.
BMC Microbiol ; 24(1): 11, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172649

RESUMEN

BACKGROUND: Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS: We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION: Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.


Asunto(s)
Microbiota , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , ARN Ribosómico 16S/genética , Erizos de Mar/genética , Bacterias/genética
15.
Zoolog Sci ; 41(2): 159-166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587910

RESUMEN

Sea urchins have been used as model organisms in developmental biology research and the genomes of several sea urchin species have been sequenced. Recently, genome editing technologies have become available for sea urchins, and methods for gene knockout using the CRISPRCas9 system have been established. Heliocidaris crassispina is an important marine fishery resource with edible gonads. Although H. crassispina has been used as a biological research material, its genome has not yet been published, and it is a non-model sea urchin for molecular biology research. However, as recent advances in genome editing technology have facilitated genome modification in non-model organisms, we applied genome editing using the CRISPR-Cas9 system to H. crassispina. In this study, we targeted genes encoding ETS transcription factor (HcEts) and pigmentation-related polyketide synthase (HcPks1). Gene fragments were isolated using primers designed by inter-specific sequence comparisons within Echinoidea. When Ets gene was targeted using two sgRNAs, one successfully introduced mutations and impaired skeletogenesis. In the Pks1 gene knockout, when two sgRNAs targeting the close vicinity of the site corresponding to the target site that showed 100% mutagenesis efficiency of the Pks1 gene in Hemicentrotus pulcherrimus, mutagenesis was not observed. However, two other sgRNAs targeting distant sites efficiently introduced mutations. In addition, Pks1 knockout H. crassispina exhibited an albino phenotype in the pluteus larvae and adult sea urchins after metamorphosis. This indicates that the CRISPRCas9 system can be used to modify the genome of the non-model sea urchin H. crassispina.


Asunto(s)
Anthocidaris , Animales , Anthocidaris/genética , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Erizos de Mar/genética , Edición Génica/métodos
16.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853946

RESUMEN

Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.


Asunto(s)
Tracto Gastrointestinal/microbiología , Erizos de Mar/microbiología , Simbiosis/genética , Adaptación Biológica/genética , Animales , Evolución Biológica , Tracto Gastrointestinal/fisiología , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Erizos de Mar/genética
17.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338794

RESUMEN

Without general adaptative immunity, invertebrates evolved a vast number of heterogeneous non-self recognition strategies. One of those well-known adaptations is the expansion of the immune receptor gene superfamily coding for scavenger receptor cysteine-rich domain containing proteins (SRCR) in a few invertebrates. Here, we investigated the evolutionary history of the SRCR gene superfamily (SRCR-SF) across 29 metazoan species with an emphasis on invertebrates. We analyzed their domain architectures, genome locations and phylogenetic distribution. Our analysis shows extensive genome-wide duplications of the SRCR-SFs in Amphimedon queenslandica and Strongylocentrotus purpuratus. Further molecular evolution study reveals various patterns of conserved cysteines in the sponge and sea urchin SRCR-SFs, indicating independent and convergent evolution of SRCR-SF expansion during invertebrate evolution. In the case of the sponge SRCR-SFs, a novel motif with seven conserved cysteines was identified. Exon-intron structure analysis suggests the rapid evolution of SRCR-SFs during gene duplications in both the sponge and the sea urchin. Our findings across nine representative metazoans also underscore a heightened expression of SRCR-SFs in immune-related tissues, notably the digestive glands. This observation indicates the potential role of SRCR-SFs in reinforcing distinct immune functions in these invertebrates. Collectively, our results reveal that gene duplication, motif structure variation, and exon-intron divergence might lead to the convergent evolution of SRCR-SF expansions in the genomes of the sponge and sea urchin. Our study also suggests that the utilization of SRCR-SF receptor duplication may be a general and basal strategy to increase immune diversity and tissue specificity for the invertebrates.


Asunto(s)
Invertebrados , Receptores Inmunológicos , Animales , Receptores Depuradores/genética , Filogenia , Receptores Inmunológicos/genética , Invertebrados/genética , Erizos de Mar/genética , Evolución Molecular
18.
Dev Biol ; 490: 117-124, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35917936

RESUMEN

The impact of new technology can be appreciated by how broadly it is used. Investigators that previously relied only on pharmacological approaches or the use of morpholino antisense oligonucleotide (MASO) technologies are now able to apply CRISPR-Cas9 to study biological problems in their model organism of choice much more effectively. The transitions to new CRISPR-based approaches could be enhanced, first, by standardized protocols and education in their applications. Here we summarize our results for optimizing the CRISPR-Cas9 technology in a sea urchin and a sea star, and provide advice on how to set up CRISPR-Cas9 experiments and interpret the results in echinoderms. Our goal through these protocols and sharing examples of success by other labs is to lower the activation barrier so that more laboratories can apply CRISPR-Cas9 technologies in these important animals.


Asunto(s)
Sistemas CRISPR-Cas , Erizos de Mar , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Morfolinos/genética , ARN Guía de Kinetoplastida/genética , Erizos de Mar/genética
19.
Dev Biol ; 484: 63-74, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35183512

RESUMEN

Sea urchin larval skeletons are produced by skeletogenic primary mesenchyme cells (PMCs), which migrate to form two ventrolateral clusters (VLCs) at the sites where biomineralization is initiated. Both PMC migration and biomineralization are controlled by VEGF signals emitted from lateral ectodermal cells. In mammals, VEGF signaling can be activated by hypoxia-inducible factor alpha (HIFα), an oxygen-sensitive transcription factor. Our previous study showed that the sea urchin maternal HIFα is involved in regulating gene expression along the dorsoventral axis. In this study, we discovered that zygotic hifα is expressed in PMCs, and at the late gastrula stage, hifα transcripts display a graded pattern, with stronger signal in the ventral PMCs than in the dorsal PMCs. We further showed that PMCs are hypoxic, which is a condition typically required for HIFα function. In embryos injected with a splice-blocking morpholino against hifα, elongation of the skeleton was impaired, and expression of vegfr-10-Ig (encodes VEGF receptor; VEGFR) was significantly reduced. This morpholino-caused defect could be partially rescued by injection of vegfr-10-Ig mRNA. Expression patterns of transcription factor and biomineralization genes, such as alx1, tbr, msp130, and the sm30 family, were affected when HIFα was knocked down or when VEGF signaling was inhibited. These results suggest that zygotic HIFα acts upstream or in parallel with VEGF signaling to regulate skeletogenic gene expression and participate in spicule elongation. Our study therefore links HIFα with the known role of VEGF signaling in sea urchin biomineralization.


Asunto(s)
Embrión no Mamífero , Factor A de Crecimiento Endotelial Vascular , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hipoxia/metabolismo , Mamíferos/genética , Morfolinos/genética , Morfolinos/metabolismo , Morfolinos/farmacología , Erizos de Mar/genética , Erizos de Mar/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Dev Biol ; 483: 128-142, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038441

RESUMEN

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Asunto(s)
Ectodermo/citología , Ectodermo/metabolismo , Desarrollo Embrionario/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , RNA-Seq/métodos , Erizos de Mar/embriología , Erizos de Mar/genética , Análisis de la Célula Individual/métodos , Proteínas de Dominio T Box/metabolismo , Animales , Blástula/metabolismo , Ectodermo/embriología , Endodermo/embriología , Endodermo/metabolismo , Gástrula/metabolismo , Redes Reguladoras de Genes , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA