Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 63(8): 1026-1037, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564530

RESUMEN

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Asunto(s)
Aldosterona , Esteroide 11-beta-Hidroxilasa , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Corticosterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálisis , Cinética
2.
FASEB J ; 37(4): e22869, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929050

RESUMEN

Steroid 11ß-hydroxylase deficiency (11ß-OHD) is a rare autosomal recessive disorder caused by pathogenic variants of CYP11B1 gene. This study aimed to perform molecular analysis of a Chinese 11ß-OHD series and in vitro functional study of twenty CYP11B1 missense variants. Twelve Chinese patients with clinical diagnosis of 11ß-OHD were included in the study to analyze their molecular etiology. Genomic DNA of patients was extracted to be sequenced all coding exons and intronic flanking sequences of CYP11B1. Fourteen missense variants found in 12 patients mentioned above along with 6 missense variants previously reported by our team were evaluated functionally. Amino acid substitutions were analyzed with computational program to determine their effects on the three-dimensional structure of CYP11B1 protein. Clinical characteristics and hormone levels at baseline of the 18 patients carrying 18 missense variants aforementioned were recorded to perform genotype-phenotype correlation. A total of 21 rare variants including 9 novel and 12 recurrent ones were identified in 12 patients, out of which 17 were missense, 2 were nonsense, 1 was a splice site variant, and 1 was a deletion-insertion variant. Results of in vitro functional study revealed that 3 out of 20 missense mutants (p.Leu3Pro, p.Gly267Ser, and p.Ala367Ser) had partial enzyme activity and the other 17 had little enzymatic activity. The impairment degree of enzymatic activity in vitro functional study was also reflected in the severity degree of interaction change between the wild-type/mutant-type amino acid and its adjacent amino acids in three-dimensional model. In conclusion, the addition of 9 novel variants expands the spectrum of CYP11B1 pathogenic variants. Our results demonstrate that twenty CYP11B1 variants lead to impaired 11ß-hydroxylase activity in vitro. Visualizing these variants in the three-dimensional model structure of CYP11B1 protein can provide a plausible explanation for the results measured in vitro.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Humanos , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/metabolismo , Pueblos del Este de Asia , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Mutación
3.
BMC Endocr Disord ; 24(1): 215, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402525

RESUMEN

BACKGROUND: 11ß-hydroxylase deficiency (11ß-OHD), caused by homozygosity or compound heterozygosity CYP11B1 variants, is the second most common cause of congenital adrenal hyperplasia (CAH). Due to the high degree of sequence identity between CYP11B1 and CYP11B2, chimeric genes, and complex structural variants (SVs), the conventional approach to gene testing for 11ß-OHD is facing challenges. The study aimed to clarify the underlying genetic causes of two siblings of a Chinese family with 11ß-OHD. METHODS: Peripheral blood samples and clinical information were collected from subjects and their family members. Sex steroid concentrations were measured using LC-MS/MS. Long-range PCR-based next-generation sequencing (NGS), PCR assay and target long-read sequencing were used to detect the pathogenic variants. RESULTS: Early onset hypertension, increased serum levels of adrenocorticotropin (ACTH), progesterone, testosterone, and decreased cortisol and potassium were detected in both affected siblings. Long-range PCR-based NGS identified a heterozygous missense variant (NM_000497.4:c.281 C > T, p.P94> L) in CYP11B1 gene in the two siblings. PCR detected no chimeric CYP11B2/CYP11B1 gene. We finally identified a second pathogenic variant in CYP11B1 gene via target long-read sequencing (T-LRS). This novel variant was a deletion-insertion variant and located chr8:143957269-143,957,579 (hg19) with the insertion of 'ACAG' (NM_000497.4:c.954 + 78_980delinsACAG), which was in trans with CYP11B1: c.281 C > T. CONCLUSIONS: Our study suggests that the integrated long-range PCR-based NGS and T-LRS seem to be the most reliable and accurate method for 11ß-OHD genetic diagnosis and carrier sequencing.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Secuenciación de Nucleótidos de Alto Rendimiento , Esteroide 11-beta-Hidroxilasa , Humanos , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/sangre , Femenino , Masculino , Esteroide 11-beta-Hidroxilasa/genética , Linaje , Adulto , Pronóstico , Mutación Missense
4.
Zhonghua Yi Xue Za Zhi ; 104(22): 2074-2078, 2024 Jun 11.
Artículo en Zh | MEDLINE | ID: mdl-38858218

RESUMEN

This study reports a family of patients with 11ß-hydroxylase deficiency (11ß-OHD) caused by a novel mutation in the CYP11B1 gene, and analyzes its clinical and genetic characteristics. The clinical data of a patient with intractable hypertension at Air Force Medical Center on May 16, 2014 were retrospectively analyzed. The patient was clinically diagnosed with congenital adrenal cortical hyperplasia. The clinical data of the patient were further collected and the peripheral blood samples of the patient, his parents and his sister were collected for CYP11B1(NM_000497) gene sequencing, suggesting that the patient had compound heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9 and exon 5:c.905_907 delATGinsTT, p.Asp302Valfs*23, both of which were pathogenic variants. The patient's father and sister carried heterozygous mutations in exon 1:c.199delG, p.Glu67Lysfs*9, and the mother carried heterozygous mutations in exon 5:c.905_907delATGinsTT, p.Asp302Valfs*23. This study is the first to report a new compound heterozygous mutation in exon 1:c.199delG and exon 5 c.905_907 delATGinsTT of CYP11B1 gene, enriching the database of 11ß-OHD mutations and providing information to further understand the genetic mechanism of the disease.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Mutación , Esteroide 11-beta-Hidroxilasa , Humanos , Esteroide 11-beta-Hidroxilasa/genética , Hiperplasia Suprarrenal Congénita/genética , Masculino , Femenino , Estudios Retrospectivos , Exones , Heterocigoto , Linaje
5.
Clin Chem ; 69(2): 149-159, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544353

RESUMEN

BACKGROUND: Recent advances in omics techniques have allowed detailed genetic characterization of cortisol-producing adrenal adenoma (CPA). In contrast, the pathophysiology of CPAs has not been elucidated in detail on the level of tumor metabolic alterations. METHODS: The current study conducted a comprehensive mass spectrometry imaging (MSI) map of CPAs in relation to clinical phenotypes and immunohistochemical profiles of steroidogenic enzymes. The study cohort comprised 46 patients with adrenal tumors including CPAs (n 35) and nonfunctional adenomas (n 11). RESULTS: Severity of cortisol hypersecretion was significantly correlated with 29 metabolites (adjusted P 0.05). Adrenal androgens derived from the classic androgen pathway were inversely correlated with both cortisol secretion (rs 0.41, adjusted P 0.035) and CYP11B1 expression (rs 0.77, adjusted P 2.00E-08). The extent of cortisol excess and tumor CYP11B1 expression further correlated with serotonin (rs 0.48 and 0.62, adjusted P 0.008 and 2.41E-05). Tumor size was found to be correlated with abundance of 13 fatty acids (adjusted P 0.05) and negatively associated with 9 polyunsaturated fatty acids including phosphatidic acid 38:8 (rs 0.56, adjusted P 0.009). CONCLUSIONS: MSI reveals novel metabolic links between endocrine function and tumorigenesis, which will further support the understanding of CPA pathophysiology.


Asunto(s)
Adenoma , Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Humanos , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Neoplasias de la Corteza Suprarrenal/metabolismo , Hidrocortisona , Esteroide 11-beta-Hidroxilasa/genética
6.
J Endocrinol Invest ; 46(11): 2367-2377, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37055708

RESUMEN

PURPOSE: Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders resulting from enzyme deficiencies associated with steroidogenesis. The clinical presentation of non-classic CAH (NCAH) in females is often indistinguishable from other hyperandrogenic disorders like polycystic ovary syndrome (PCOS). The data on the prevalence of NCAH in unselected women in the literature is scanty. The research aimed to evaluate the prevalence of NCAH, carrier frequencies, and the correlation between clinical symptoms and genotype in Turkish women. METHODS: The study group comprised two hundred and seventy randomly-selected unrelated asymptomatic women of reproductive age (18-45). Subjects were recruited from female blood donors. All volunteers underwent clinical examination and hormone measurements. The protein-encoding exons and exon-intron boundaries of the CYP21A2, CYP11B1, HSD3ß2 and CYP21A2 promoter were sequenced by direct DNA sequencing. RESULTS: After genotyping, seven (2.2%) individuals were diagnosed with NCAH. The heterozygous carrier frequencies of CYP21A2, CYP21A2 promoter, CYP11B1, and HSD3ß2 genes with 34, 34, 41, and 1 pathologic mutation were determined at 12.6%, 12.6%, 15.2%, and 0.37% of volunteers, respectively. Gene-conversion (GC) frequencies between CYP21A2/CYP21A1P and CYP11B1/CYP11B2 were determined as 10.4% and 14.8%, respectively. CONCLUSION: Despite GC-derived higher mutation frequency determined in the CYP11B1 gene, the reason for the low frequency of NCAH due to 11OHD compared to 21OHD might be that gene-conversion arises with active CYP11B2 rather than an inactive pseudogene. HSD3ß1 exhibits high homology with HSD3ß2 located on the same chromosome; remarkably, it demonstrates low heterozygosity and no GC, most probably the outcome of a tissue-specific expression pattern.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Femenino , Humanos , Esteroide 11-beta-Hidroxilasa/genética , Tasa de Mutación , Esteroide 21-Hidroxilasa/genética , Citocromo P-450 CYP11B2/genética , Hiperplasia Suprarrenal Congénita/epidemiología , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Mutación
7.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982850

RESUMEN

Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.


Asunto(s)
Adenoma , Adenoma Corticosuprarrenal , Humanos , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Aldosterona/metabolismo , Oxigenasas de Función Mixta/genética , Hidrocortisona/metabolismo , Angiotensina II/metabolismo , Adenoma Corticosuprarrenal/genética , Adenoma/patología , Epigénesis Genética , Factores de Transcripción/metabolismo , Potasio/metabolismo , ADN
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(4): 462-467, 2023 Apr 10.
Artículo en Zh | MEDLINE | ID: mdl-36972943

RESUMEN

OBJECTIVE: To analyze a child with 11ß hydroxylase deficiency (11ß-OHD) due to CYP11B2/CYP11B1 chimeric gene. METHODS: Clinical data of the child who was admitted to Henan Children's Hospital on August 24, 2020 were retrospectively analyzed. Peripheral blood samples of the child and his parents were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing. RT-PCR and Long-PCR were carried out to verify the presence of chimeric gene. RESULTS: The patient, a 5-year-old male, had featured premature development of secondary sex characteristics and accelerated growth, and was diagnosed with 21 hydroxylase deficiency (21-OHD). WES revealed that he has harbored a heterozygous c.1385T>C (p.L462P) variant of the CYP11B1 gene, in addition to a 37.02 kb deletion on 8q24.3. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.1385T>C (p.L462P) was rated as a likely pathogenic variant (PM2_Supporting+PP3_Moderate+PM3+PP4). The results of RT-PCR and Long-PCR suggested that CYP11B1 and CYP11B2 genes have recombined to form a CYP11B2 exon 1~7/CYP11B1 exon 7~9 chimeric gene. The patient was diagnosed as 11ß-OHD and effectively treated with hydrocortisone and triptorelin. A healthy fetus was delivered following genetic counseling and prenatal diagnosis. CONCLUSION: 11ß-OHD may be misdiagnosed as 21-OHD due to the potential CYP11B2/CYP11B1 chimeric gene, which will require multiple methods for the detection.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Preescolar , Humanos , Masculino , Hiperplasia Suprarrenal Congénita/genética , Citocromo P-450 CYP11B2/genética , Exones , Estudios Retrospectivos , Esteroide 11-beta-Hidroxilasa/genética
9.
BMC Bioinformatics ; 22(Suppl 10): 613, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012455

RESUMEN

BACKGROUND: Glucocorticoid-remediable aldosteronism (GRA) is a form of heritable hypertension caused by a chimeric fusion resulting from unequal crossing over between 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), which are two genes with similar sequences. Different crossover patterns of the CYP11B1 and CYP11B2 chimeric genes may be associated with a variety of clinical presentations. It is therefore necessary to develop an efficient approach for identifying the differences between the hybrid genes of a patient with GRA. RESULTS: We developed a long-read analysis pipeline named GRAde (GRA deciphering), which utilizes the nonidentical bases in the CYP11B1 and CYP11B2 genomic sequences to identify and visualize the chimeric form. We sequenced the polymerase chain reaction (PCR) products of the CYP11B1/CYP11B2 chimeric gene from 36 patients with GRA using the Nanopore MinION device and analyzed the sequences using GRAde. Crossover events were identified for 30 out of the 36 samples. The crossover sites appeared in the region exhibiting high sequence similarity between CYP11B1 and CYP11B2, and 53.3% of the cases were identified as having a gene conversion in intron 2. More importantly, there were six cases for whom the PCR products indicated a chimeric gene, but the GRAde results revealed no crossover pattern. The crossover regions were further verified by Sanger sequencing analysis. CONCLUSIONS: PCR-based target enrichment followed by long-read sequencing is an efficient and precise approach to dissecting complex genomic regions, such as those involved in GRA mutations, which could be directly applied to clinical diagnosis. The scripts of GRAde are available at https://github.com/hsu-binfo/GRAde .


Asunto(s)
Citocromo P-450 CYP11B2 , Hiperaldosteronismo , Esteroide 11-beta-Hidroxilasa , Citocromo P-450 CYP11B2/genética , Humanos , Hiperaldosteronismo/genética , Proteínas Mutantes Quiméricas , Mutación , Esteroide 11-beta-Hidroxilasa/genética
10.
Clin Chem ; 68(7): 927-939, 2022 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714169

RESUMEN

BACKGROUND: Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder that has been included in newborn screening programs. Current approaches to gene testing for CAH are facing challenges because of the complexity of the CYP21A2 locus and genetic heterogeneity of the disease. METHODS: A comprehensive analysis of CAH (CACAH) combining long-range locus-specific PCR and long-read sequencing (LRS) was developed to perform full sequence analysis of 5 common CAH candidate genes, including CYP21A2, CYP11B1, CYP17A1, HSD3B2, and StAR. In a blind retrospective study, the clinical utility of CACAH was evaluated in 37 samples by comparing to standard CAH testing using multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing. RESULTS: Of the 37 clinical samples, a total of 69 pathogenic variants were identified, comprising 65 CYP21A2 variants, 2 HSD3B2 variants, and 2 CYP17A1 variants. For CYP21A2, the most frequent variant was c.518T > A (29.2%), followed by c.293-13C/A > G (21.5%). Compared with the current CAH testing using MLPA plus Sanger sequencing, the CACAH assay showed 100% specificity and 100% sensitivity, and precisely determined the junction sites of deletions/insertions and cis-trans configuration of multiple variants without analyzing family samples. Moreover, CACAH identified a case carrying 2 copies of CYP21A1 with the c.1451_1452delinsC variant on the same chromosome, which was not confirmed by MLPA plus Sanger sequencing. CONCLUSION: LRS-based CACAH can determine all genotypes of CAH accurately and reliably in one assay, presenting a comprehensive approach for CAH genetic diagnosis and carrier screening.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Humanos , Recién Nacido , Mutación , Estudios Retrospectivos , Análisis de Secuencia , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/genética
11.
Clin Endocrinol (Oxf) ; 96(1): 30-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743356

RESUMEN

OBJECTIVE: Primary aldosteronism (PA) shows histological heterogeneity and clinical variability, including the coexistence of hypercortisolemia. Immunohistochemical analyses of steroidogenic enzymes in adrenal tissues have provided new insights into the pathogenesis of PA. However, a comprehensive analysis of the association between enzyme expression and clinical characteristics of PA has rarely been conducted. We aimed to investigate the correlation between clinical characteristics and steroidogenic enzyme expression in PA. DESIGN: A retrospective case-control study. PATIENTS: Consecutive patients who underwent unilateral adrenalectomy for PA (n = 180). Patients with adrenal Cushing's syndrome (CS) (n = 29) and nonfunctioning adenoma (n = 6) as comparator groups. MEASUREMENTS: A tissue microarray of adrenal adenomas was constructed and immunostained for CYP11B1, CYP11B2 and CYP17A1. The expression of the three enzymes was compared between PA and other adrenal diseases and between PA with and without mild autonomous cortisol excess (MACE). RESULTS: Adrenal adenomas in PA showed lower CYP11B1, higher CYP11B2 and lower CYP17A1 expression than those in adrenal CS (p < .001). Nonfunctioning adenomas showed low expression of the three enzymes. PA with MACE showed higher CYP11B1 expression than PA without MACE. CYP11B1 expression was positively correlated with the severity of hypercortisolemia, and CYP11B2 was positively correlated with that of hyperaldosteronism. The expression of CYP11B1 and CYP11B2 had a negative correlation. Patients with absent clinical improvement after adrenalectomy had lower CYP11B2 expression than those with complete success. CONCLUSIONS: Variable expression of steroidogenic enzymes in adrenal adenoma underlies the clinical heterogeneity of PA and is associated with treatment outcomes.


Asunto(s)
Adenoma , Hiperaldosteronismo , Aldosterona , Estudios de Casos y Controles , Citocromo P-450 CYP11B2/genética , Humanos , Estudios Retrospectivos , Esteroide 11-beta-Hidroxilasa/genética
12.
Yi Chuan ; 44(12): 1175-1182, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36927563

RESUMEN

Congenital adrenal hyperplasia (CAH) is an autosomal recessive hereditary disease, and the 11ß- hydroxylase deficiency is the second most common syndrome in different types of CAH. The occurrence of 11ß- hydroxylase deficiency is related to the mutation of CYP11B gene on human autosome 8. In this report, we detected the gene mutation sites of a 14-year-old patient with 11ß-hydroxylase deficiency by whole exon sequencing (WES), verified the suspected mutation by Sanger sequencing, and analyzed its characteristics. Gene sequencing revealed that homozygous missense mutation of c.1226C>T appeared on the 8th exon of CYP11B1 gene, which resulted in the mutation of the encoding protein Ser409 to phenylalanine (p. Ser409Phe), affecting the binding of heme and enzyme and resulting in the loss of CYP11B1 enzyme activity and a series of clinical symptoms. This mutation has not been reported at home and abroad. This case enriches the variation spectrum of CYP11B1 gene and provides clinical data and genetic resources for further research on the pathogenesis of 11ß-hydroxylase deficiency.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Humanos , Adolescente , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Mutación , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/metabolismo , Mutación Missense , Exones
13.
Mol Biol Evol ; 37(8): 2257-2267, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196091

RESUMEN

Metabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. Although there is great diversity of types of enzymes that make up metabolic networks, the models meant to understand the possible evolutionary outcomes following duplication neglect specifics about the enzyme, pathway context, and cellular constraints. To illuminate the mechanisms that shape the evolution of biochemical pathways, I functionally characterize the consequences of gene duplication of an enzyme family that performs multiple subsequent enzymatic reactions (a multistep enzyme) in the corticosteroid pathway in primates. The products of the corticosteroid pathway (aldosterone and cortisol) are steroid hormones that regulate metabolism and stress response in tetrapods. These steroid hormones are synthesized by a multistep enzyme Cytochrome P450 11B (CYP11B) that performs subsequent steps on different carbon atoms of the steroid derivatives. Through ancestral state reconstruction and in vitro characterization, I find that the primate ancestor of the CYP11B1 and CYP11B2 paralogs had moderate ability to synthesize both cortisol and aldosterone. Following duplication in Old World primates, the CYP11B1 homolog specialized on the production of cortisol, whereas its paralog, CYP11B2, maintained its ability to perform multiple subsequent steps as in the ancestral pathway. Unlike CYP11B1, CYP11B2 could not specialize on the production of aldosterone because it is constrained to perform earlier steps in the corticosteroid synthesis pathway to achieve the final product aldosterone. These results suggest that enzyme function, pathway context, along with tissue-specific regulation, both play a role in shaping potential outcomes of metabolic network elaboration.


Asunto(s)
Corticoesteroides/biosíntesis , Evolución Molecular , Duplicación de Gen , Primates/genética , Esteroide 11-beta-Hidroxilasa/genética , Animales , Humanos , Primates/metabolismo , Esteroide 11-beta-Hidroxilasa/metabolismo
14.
Biochem Biophys Res Commun ; 534: 672-679, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220920

RESUMEN

Aldosterone is synthesized in the adrenal by the aldosterone synthase CYP11B2. Although the control of CYP11B2 expression is important to maintain the mineral homeostasis, its overexpression induced by the depolarization-induced calcium (Ca2+) signaling activation has been reported to increase the synthesis of aldosterone in primary aldosteronism (PA). The drug against PA focused on the suppression of CYP11B2 expression has not yet been developed, since the molecular mechanism of CYP11B2 transcriptional regulation activated via Ca2+ signaling remains unclear. To address the issue, we attempted to reveal the mechanism of the transcriptional regulation of CYP11B2 using chemical screening. We generated a cell line by inserting Nanoluc gene as a reporter into CYP11B2 locus in H295R adrenocortical cells using the CRSPR/Cas9 system, and established the high-throughput screening system using the cell line. We then identified 9 compounds that inhibited the CYP11B2 expression induced by potassium-mediated depolarization from the validated compound library (3399 compounds). Particularly, tacrolimus, an inhibitor of phosphatase calcineurin, strongly suppressed the CYP11B2 expression even at 10 nM. These results suggest that the system is effective in identifying drugs that suppress the depolarization-induced CYP11B2 expression. Our screening system may therefore be a useful tool for the development of novel medicines against PA.


Asunto(s)
Citocromo P-450 CYP11B2/antagonistas & inhibidores , Citocromo P-450 CYP11B2/genética , Edición Génica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/metabolismo , Aldosterona/biosíntesis , Secuencia de Bases , Señalización del Calcio , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Hiperaldosteronismo/tratamiento farmacológico , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroide 11-beta-Hidroxilasa/genética , Tacrolimus/farmacología
15.
Mol Hum Reprod ; 27(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34057472

RESUMEN

During follicular development, a few dominant follicles develop to large antral dominant follicles, whereas the remaining follicles undergo atretic degeneration. Because vascularization on the follicular surface is a morphological feature of dominant follicles, we previously classified these follicles as vascularized follicles (VFs) and non-VFs (NVFs). In NVFs, progesterone producing genes were expressed similarly to that in VFs; however, the progesterone concentration in follicular fluid was low in large NVFs. Therefore, we estimated that progesterone is converted to cortisol, which induces the loss of follicular functions. In this study, we comparative analyzed the expression of genes for progesterone converting enzymes (Cytochrome (CYP)11B1, CYP21A2, Hydroxysteroid (HSD)11B2) and cortisol receptor (NR3C1) in VF and NVF granulosa cells. In NVFs, expression of cortisol producing genes (CYP11B1 and CYP21A2) was higher than in VFs. Expression of the gene for the cortisol metabolizing enzyme HSD11B2 in NVFs was significantly lower than in VFs. In NVFs, accompanied by increasing cortisol concentration in follicular fluid, apoptosis of granulosa and cumulus cells was observed. Cultivation with FSH and metyrapone (a CYP11B1 inhibitor) of NVF cumulus-oocyte complexes inhibited apoptosis of cumulus cells and induced cumulus cell proliferation and oocyte maturation. Cortisol-induced CYP11B1 and CYP21A2 expression, whereas FSH-induced HSD11B2 mRNA expression in VF granulosa cells in the presence of cortisol. Furthermore, an addition of 18ß-glycyrrhetinic acid (18-GA; a HSD17B2 inhibitor) to cortisol and FSH-containing medium increased apoptosis of VF granulosa cells. These results suggested that cortisol is a stimulatory factor that induces follicular atresia; furthermore, inhibition of cortisol production by FSH might increase the number of healthy preovulatory follicles in pigs.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Atresia Folicular/efectos de los fármacos , Hidrocortisona/farmacología , 11-beta-Hidroxiesteroide Deshidrogenasas/biosíntesis , 11-beta-Hidroxiesteroide Deshidrogenasas/genética , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/metabolismo , Inducción Enzimática , Femenino , Hormona Folículo Estimulante/fisiología , Líquido Folicular/química , Regulación de la Expresión Génica , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Hidrocortisona/análisis , Hidrocortisona/fisiología , Metirapona/farmacología , Modelos Biológicos , Progesterona/metabolismo , Receptores de Glucocorticoides/biosíntesis , Receptores de Glucocorticoides/genética , Esteroide 11-beta-Hidroxilasa/biosíntesis , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/biosíntesis , Esteroide 21-Hidroxilasa/genética , Porcinos
16.
Clin Endocrinol (Oxf) ; 94(4): 533-543, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33275286

RESUMEN

OBJECTIVE: To report clinical, hormonal and structural effects of CYP11B1 pathogenic variations in Indian patients with 11ß-hydroxylase deficiency (11ßOHD) and find hormonal criteria that accurately distinguish 11ßOHD from 21α-hydroxylase deficiency (21OHD). DESIGN: Retrospective record review of genetically diagnosed patients with 11ßOHD. PATIENTS AND MEASUREMENTS: Clinical features, hormonal parameters at diagnosis (by immunoassay) and recent follow-up of 13 genetically proven 11ßOHD patients managed at our centre were retrospectively reviewed. ACTH-stimulated serum adrenal steroids (measured by LC-MS/MS) of 11ßOHD were compared with those of simple virilizing and non-classic 21OHD. Structural analysis of the observed pathogenic variations was performed by computational modelling. RESULTS: Nine (four females) and four (all females) patients had classic and non-classic disease, respectively. All 11ßOHD patients had elevated ACTH-stimulated serum 11-deoxycortisol (26.5-342.7 nmol/L) whereas none had elevated serum 17-hydroxyprogesterone (4.2-21.2 nmol/L); both hormonal parameters distinguished 11ßOHD from 21OHD with 100% accuracy. ACTH-stimulated serum cortisol, but not 11-deoxycortisol, clearly distinguished classic (<70 nmol/L) from non-classic (>160 nmol/L) disease. Thirteen (eight novel, two recurrent) pathogenic variants were observed. Only missense mutations were observed among patients with non-classic disease. Computational modelling predicted the possible affection of enzyme structure and function for all the observed missense mutations. CONCLUSIONS: This first Indian study describes 13 11ßOHD patients, including four with the rarer non-classic variant. A total of eight novel pathogenic variants were identified in our study, highlighting regional genetic heterogeneity. Measurement of ACTH-stimulated adrenal steroids by LC-MS/MS will help avoid the misdiagnosis of 11ßOHD as 21OHD and has potential to distinguish classic from non-classic 11ßOHD.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Esteroides , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Cromatografía Liquida , Femenino , Humanos , Masculino , Mutación , Estudios Retrospectivos , Esteroide 11-beta-Hidroxilasa/genética , Espectrometría de Masas en Tándem
17.
J Psychiatry Neurosci ; 46(1): E147-E153, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33245660

RESUMEN

Background: Cumulative exposure to high glucocorticoid levels is detrimental for the brain and may have particular implications in later life. A feature of late-life depression is increased cortisol secretion. Variants in the CYP11B1 gene, which codes for the enzyme responsible for cortisol synthesis, could influence risk of late-life depression, but this hypothesis has not been examined. We investigated the associations between variants in the CYP11B1 gene and late-life depression, taking into account history of depression and potential sex-specific effects. Methods: We assessed depression in 1007 community-dwellers aged 65 years or older (60% women) at baseline and over a 14-year follow-up. A clinical level of depression was defined as a score of ≥ 16 on the Centre for Epidemiology Studies Depression scale or a diagnosis of current major depression based on the Mini-International Neuropsychiatric Interview and according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV). We examined incident and recurrent depression in participants without or with a history of major depression, respectively. We genotyped 5 single-nucleotide polymorphisms (SNPs) spanning CYP11B1. We used multivariable analyses to adjust for age, body mass index, cardiovascular ischemic pathologies, hypertension, cognitive impairment and anxiety. Results: In women, rs6471580 and rs7016924 were associated with a 50% lower rate of incident (new-onset) late-life depression, and rs11783855 was associated with a 2.4-fold higher rate of late-life depression. These associations remained after correction for multiple testing, but we found no associations for recurrent depression in women or men. Limitations: This study focused on the major gene involved in corticosteroid biosynthesis, but other genes may also be implicated in this pathway. Conclusion: Variants of the CYP11B1 gene appear to be susceptibility factors for late-life depression in a sex-specific manner.


Asunto(s)
Envejecimiento/genética , Trastorno Depresivo/genética , Predisposición Genética a la Enfermedad/genética , Esteroide 11-beta-Hidroxilasa/genética , Anciano , Anciano de 80 o más Años , Trastornos de Ansiedad/epidemiología , Comorbilidad , Trastorno Depresivo/epidemiología , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Femenino , Francia/epidemiología , Humanos , Incidencia , Vida Independiente , Estudios Longitudinales , Masculino , Obesidad/epidemiología , Polimorfismo de Nucleótido Simple , Factores Sexuales
18.
BMC Endocr Disord ; 21(1): 237, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823514

RESUMEN

BACKGROUND: Our study aims to summarize the clinical characteristics of rare types of congenital adrenal hyperplasia (CAH) other than 21-hydroxylase deficiency (21-OHD), and to explore the clinical applications of genetic analysis and liquid chromatography tandem-mass spectrometry (LC-MS/MS) in rare CAH. METHODS: We retrospectively analysed the clinical data of 5 rare cases of CAH admitted to our hospital and summarized their clinical manifestations, auxiliary examinations, diagnosis and mutational spectrum. RESULTS: After gene sequencing, complex heterozygous variants were detected in all patients (2 cases were lipoid congenital adrenal hyperplasia (LCAH), 11ß-hydroxylase deficiency (11ß-OHD), 3ß-hydroxysteroid dehydrogenase deficiency (3ß-HSD deficiency) and P450 oxidoreductase deficiency (PORD) each accounted for 1 case), which were consistent with their clinical manifestations. Among them, 4 novel variants were detected, including c.650 + 2 T > A of the StAR gene, c.1145 T > C (p. L382P) of the CYP11B1 gene, c.1622C > T (p. A541V) and c.1804C > T (p. Q602 *) of the POR gene. The LC-MS/MS results for steroid hormones in patients were also consistent with their genetic variants: 2 patients with LCAH showed a decrease in all steroid hormones; 11ß-OHD patient showed a significant increase in 11-deoxycortisol and 11-deoxycorticosterone; patient with 3ß-HSD deficiency showed a significant increase in DHEA; and PORD patient was mainly characterized by elevated 17OHP, progesterone and impaired synthesis of androgen levels. CONCLUSIONS: The clinical manifestations and classification of CAH are complicated, and there are cases of missed diagnosis or misdiagnosis. It's necessary to combine the analysis of clinical manifestations and auxiliary examinations for diagnosis; if necessary, LC-MS/MS analysis of steroid hormones or gene sequencing is recommended for confirming diagnosis and typing.


Asunto(s)
Hiperplasia Suprarrenal Congénita/sangre , Hiperplasia Suprarrenal Congénita/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Niño , Preescolar , China , Trastorno del Desarrollo Sexual 46,XY/sangre , Trastorno del Desarrollo Sexual 46,XY/genética , Femenino , Hormonas Esteroides Gonadales/sangre , Humanos , Recién Nacido , Masculino , Estudios Retrospectivos , Análisis de Secuencia de ADN , Espectrometría de Masa por Ionización de Electrospray , Esteroide 11-beta-Hidroxilasa/genética
19.
J Reprod Dev ; 66(1): 75-81, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31839646

RESUMEN

Unlike sex steroids, mineralocorticoids have attracted limited attention in ovarian physiology. Recent studies on primates have indicated possible local synthesis and action of mineralocorticoids in the ovary. Here, we examined developmental changes in the levels of mineralocorticoids and expression of genes encoding their biosynthetic enzymes and receptor in the bovine ovary. The follicles and corpora lutea (CL) were collected from F1 heifers. Expression levels of 21α-hydroxylase (CYP21A2), 11ß-hydroxylase-1 (CYP11B1), and the mineralocorticoid receptor (NR3C2) in granulosa cells (GC), thecal layers (TL), and CL tissues were quantified by real-time PCR, whereas mineralocorticoids in the follicular fluid were measured by enzyme immunoassay (EIA). TL and GC expressed CYP21A2 and NR3C2, whereas CYP11B1 was expressed at very low or undetectable levels. The expression levels of these genes were not significantly different among small/large and healthy/atretic follicles but were higher in TL than in GC. CYP21A2 and NR3C2 were expressed in all CL stages with higher expression observed in the mid-stage. CYP11B1 expression was only apparent in the mid-stage CL. Aldosterone was detected in all follicles, and its concentration was not significantly different among the follicular groups. In paired large-healthy/atretic follicles, the concentration of deoxycorticosterone, a precursor of aldosterone, was approximately ten-fold higher than that of aldosterone and not significantly different between healthy and atretic follicles. In conclusion, the presence of mineralocorticoids and expression of NR3C2 in the bovine follicle together with the developmental change in the expression of CYP21A2, CYP11B1, and NR3C2 in the CL suggest possible endocrine/paracrine/autocrine roles of mineralocorticoids in the bovine ovary.


Asunto(s)
Cuerpo Lúteo/metabolismo , Mineralocorticoides/metabolismo , Folículo Ovárico/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Bovinos , Femenino , Expresión Génica , Células de la Granulosa/metabolismo , Receptores de Mineralocorticoides/genética , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Células Tecales/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(10): E1933-E1940, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28228528

RESUMEN

Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11ß-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11ß-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11ß-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11ß-hydroxylase deficiency CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita/genética , Esteroide 11-beta-Hidroxilasa/genética , Hiperplasia Suprarrenal Congénita/patología , África del Norte , Consanguinidad , Femenino , Hormonas Esteroides Gonadales/biosíntesis , Hormonas Esteroides Gonadales/genética , Humanos , Masculino , Medio Oriente , Mutación Missense , Linaje , Esteroide 11-beta-Hidroxilasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA