RESUMEN
Cerebellar ataxia(CA) is defined as a degenerative disease of the nervous system. Repetitive transcranial magnetic stimulation (rTMS) has been a promising treatment for neurological and psychiatric diseases. Hence, to find out whether cerebellar rTMS impacts CA as a potential therapy, we performed a systematic review and meta-analysis. Qualified studies through a systematic search were retrieved for randomized controlled trials (RCTs) using acknowledged databases. Review Manager 5.4 software was employed to synthesize the data. A total of seven studies were identified as eligible and included in the quantitative review. Comparing real and sham-rTMS interventions, the utilization of rTMS on cerebellum improved the scale for the assessment and rating of ataxia (SARA) (SMD - 0.87, 95% CI - 1.41 to - 0.34; P = 0.001; I2 = 62%), the International Cooperative Ataxia Rating Scale (ICARS) (SMD - 1.06, 95% CI - 1.47 to - 0.64; P < 0.00001; I2 = 0%) and Berg balance Scale (BBS) (SMD 0.76, 95% CI 0.33 to 1.19; P = 0.0005; I2 = 39%). The subgroup analysis demonstrated high-frequency of rTMS had a positive effect (SMD - 1.28, 95% CI - 1.82 to - 0.74; P < 0.00001; I2 = 0%). For the safety, the incidence of adverse events between the two groups was not significantly different (OR 1.73, 95% CI 0.55 to 5.46; P = 0.35; I2 = 0%). In conclusion, this meta-analysis provided limited evidence, suggesting a possible strategy that rTMS over the cerebellum could be a viable therapy for symptoms associated with CA. Besides, rTMS intervention was well-attended and did not result in unanticipated negative effects.
Asunto(s)
Ataxia Cerebelosa , Trastornos Mentales , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Ataxia Cerebelosa/terapia , Cerebelo , AtaxiaRESUMEN
BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.
Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Ratones , Animales , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Proteína con Dominio Pirina 3 de la Familia NLR , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Microglía/metabolismo , Piroptosis , Inflamasomas/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Cognición , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Neurogénesis/efectos de la radiaciónRESUMEN
BACKGROUND: This study aims to evaluate the efficacy of transcranial magnetic stimulation (TMS) in patients with depression and whether concurrent psychotropic medication use negatively affects the treatment outcome of TMS. Patients' characteristics, predictors of treatment response, the relationship between demographics, and the selection of TMS as a treatment modality were also analyzed. STUDY QUESTION: Can psychotropic medication be a factor that can negatively affect the efficacy of TMS in patients with depression? STUDY DESIGN: This pilot-controlled study included 40 subjects from Romanian clinical practice who were treated with pharmacological treatment and TMS for major depressive disorder. The severity of depression and anxiety symptoms was measured using validated scales at baseline (day 1) and follow-up (day 30). DATA SOURCES: All patients' characteristics and information were collected manually from the clinic's medical records, deidentified, and then introduced into an electronic database for analysis. LIMITATIONS: Conducting the study in a clinical routine practice, it was not possible to include an active and/or sham control group. In addition, because TMS is not used as a monotherapy in this type of practice, we could not evaluate its safety and efficacy without concomitant pharmacological treatment. The study sample is small; therefore, the results cannot be generalized. RESULTS: Sixty percentage of patients (n = 24) included in this study obtained a clinical response, and 30% of patients (n = 12) obtained remission of depression. The group with pharmacological treatment obtained clinical responses in 80% of patients (n = 16) and remission of depression in 45% of patients (n = 9). The group with pharmacological treatment and TMS obtained clinical responses in 40% of patients (n = 8) and remission of depression in 15% (n = 3) of cases. CONCLUSIONS: The study results show a lack of efficacy for TMS as an adjunctive therapy to pharmacological treatment for patients with depression. In addition, a negative impact of psychotropic medication on TMS efficacy is observed in our study sample.
Asunto(s)
Trastorno Depresivo Mayor , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Bases de Datos Factuales , EtnicidadRESUMEN
AIM: To evaluate available evidence examining safety and efficacy of non-invasive brain stimulation (NIBS) on upper extremity outcomes in children with cerebral palsy (CP). METHOD: We electronically searched 12 sources up to May 2023 using JBI and Cochrane guidelines. Two reviewers selected articles with predetermined eligibility criteria, conducted data extraction, and assessed risk of bias using the Cochrane Risk of Bias criteria. RESULTS: Nineteen studies were included: eight using repetitive transcranial magnetic stimulation (rTMS) and 11 using transcranial direct current stimulation (tDCS). Moderate certainty evidence supports the safety of rTMS and tDCS for children with CP. Very low to moderate certainty evidence suggests that rTMS and tDCS result in little to no difference in upper extremity outcomes. INTERPRETATION: Evidence indicates that NIBS is a safe and feasible intervention to target upper extremity outcomes in children with CP, although it also indicates little to no significant impact on upper extremity outcomes. These findings are discussed in relation to the heterogeneous participants' characteristics and stimulation parameters. Larger studies of high methodological quality are required to inform future research and protocols for NIBS.
Asunto(s)
Parálisis Cerebral , Estimulación Transcraneal de Corriente Directa , Niño , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Parálisis Cerebral/terapia , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Extremidad Superior , Encéfalo/fisiologíaRESUMEN
BACKGROUND: Psychological and existential suffering affects many people with advanced illness, and current therapeutic options have limited effectiveness. Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective therapy for refractory depression, but no previous study has used rTMS to treat psychological or existential distress in the palliative setting. AIM: To determine whether a 5-day course of "accelerated" rTMS is feasible and can improve psychological and/or existential distress in a palliative care setting. DESIGN: Open-label, single arm, feasibility, and preliminary efficacy study of intermittent theta-burst stimulation to the left dorsolateral prefrontal cortex, 600 pulses/session, 8 sessions/day (once per hour) for 5 days. The outcomes were the rates of recruitment, completion of intervention, and follow-up (Feasibility); and the proportion of participants achieving 50% improvement on the Hamilton Depression Rating Scale (HDRS) or Hospital Anxiety and Depression Scale (HADS) 2 weeks post-treatment (Preliminary Efficacy). SETTING/PARTICIPANTS: Adults admitted to our academic Palliative Care Unit with advanced illness, life expectancy >1 month and psychological distress. RESULTS: Due to COVID-19 pandemic-related interruptions, a total of nine participants were enrolled between August 2021 and April 2023. Two withdrew before starting rTMS, one stopped due to clinical deterioration unrelated to rTMS, and six completed the rTMS treatment. Five of six participants had a >50% improvement in HDRS, HADS-Anxiety, or both between baseline and the 2 week follow up; the sixth died prior to the 2-week follow-up. In this small sample, mean depression scores decreased from baseline to 2 weeks post-treatment (HDRS 18 vs 7, p = 0.03). Side effects of rTMS included transient mild scalp discomfort. CONCLUSIONS: Accelerated rTMS improved symptoms of depression, anxiety, or both in this small feasibility and preliminary efficacy study. A larger, sham-controlled study is warranted to determine whether rTMS could be an effective, acceptable, and scalable treatment in the palliative setting. TRIAL REGISTRATION: NCT04257227.
Asunto(s)
Neoplasias , Estimulación Magnética Transcraneal , Adulto , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Resultado del Tratamiento , Estudios de Factibilidad , PandemiasRESUMEN
BACKGROUND: The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES: To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS: We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA: We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS: We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS: Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Trastornos por Estrés Postraumático , Estimulación Magnética Transcraneal , Humanos , Trastornos por Estrés Postraumático/terapia , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/efectos adversos , Adulto , Masculino , Sesgo , Femenino , Resultado del TratamientoRESUMEN
OBJECTIVE: Temporomandibular disorders (TMD) are characterised by chronic pain and dysfunction in the jaw joint and masticatory muscles. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential non-invasive treatment for chronic pain; however, its effectiveness in individuals with TMD has not been thoroughly investigated. This study aimed to evaluate the immediate and sustained (over seven consecutive days) effects of a single session of active rTMS compared to sham stimulation on pain intensity and pain unpleasantness in individuals with TMD. METHODS: A randomised, double-blind, sham-controlled trial enrolled 41 female participants with chronic TMD. Pain intensity and pain unpleasantness were assessed immediately pre- and post-intervention, as well as twice daily for 21 days using electronic diaries. Secondary outcomes included pain interference, sleep quality, positive and negative affect and pain catastrophizing. Adverse effects were monitored. Repeated measures ANOVA and multilevel modelling regression analyses were employed for data analysis. RESULT: Active rTMS demonstrated a significant immediate mild reduction in pain intensity and pain unpleasantness compared to sham stimulation. However, these effects were not sustained over the 7-day post-intervention period. No significant differences were observed between interventions for pain interference, sleep quality and negative affect. A minority of participants reported minor and transient side effects, including headaches and fatigue. CONCLUSION: A single session of active rTMS was safe and led to immediate mild analgesic effects in individuals with TMD compared to sham stimulation. However, no significant differences were observed between interventions over the 7-day post-intervention period. Based on this study, rTMS stimulation appears to be a promising safe approach to be tested in TMD patients with longer stimulation protocols.
Asunto(s)
Dolor Crónico , Trastornos de la Articulación Temporomandibular , Humanos , Femenino , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Dolor Crónico/etiología , Enfermedad Crónica , Trastornos de la Articulación Temporomandibular/terapia , Trastornos de la Articulación Temporomandibular/etiología , Método Doble Ciego , Analgésicos , Resultado del TratamientoRESUMEN
INTRODUCTION: Depression is a common, serious and often chronic disorder and one of the leading causes of disability worldwide. The annual prevalence of depression is 5-10%, twice as high among women as men and the lifetime prevalence is at least 20%. Up to a third of depressed individuals meet criteria for treatment-resistant depression, where two antidepressants have been tried for at least 6 weeks each at therapeutic doses. As of January 2022 transcranial magnetic stimulation for adults with treatment-resistant depression that has not responded to other forms of treatment has been available by a service that is part of Primary Health Care of the Capital Area in Iceland. METHODS: This is a retrospective cohort study where participants completed a course of magnetic transcranial treatment for depression in the years 2022 and 2023. Two validated self-rating measures were used to assess depression. Information on previous treatment approaches for depression was collected from electronic health records. RESULTS: 104 individuals completed the treatment in these first two years, 60,6% women. Most had unipolar depression (86,5%), but a small subgroup had bipolar depression (13,5%). The proportion of responders varied according to the measures used, 36,1% and 45,7%, respectively, and the same was true for remission where the proportions were 12,4% and 31,5%, respectively, higher for the longer inventory. The drop-out rate was only 12,5% and no serious adverse events were reported during the treatment. CONCLUSION: The results support that magnetic transcranial stimulation, as provided by this service is effective in treating treatment-resistant or longstanding depression in a real life clinical setting and the low drop-out rate supports that the treatment is generally very well tolerated.
Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Estudios Retrospectivos , Resultado del Tratamiento , Trastorno Depresivo Resistente al Tratamiento/terapia , Trastorno Depresivo Resistente al Tratamiento/diagnóstico , Trastorno Depresivo Resistente al Tratamiento/psicología , Trastorno Depresivo Resistente al Tratamiento/epidemiología , Islandia/epidemiología , Estimulación Magnética Transcraneal/efectos adversos , Factores de Tiempo , Persona de Mediana Edad , Adulto , Inducción de Remisión , Antidepresivos/uso terapéutico , Escalas de Valoración PsiquiátricaRESUMEN
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) remains a promising strategy for neurorehabilitation. The stimulation intensity (SI) influences the aftereffects observed. Here, we examined whether single sessions of a 15 Hz rTMS protocol, administered at suprathreshold SI, can be safely administered to able-bodied (AB) individuals. Six right-handed men were included in this pilot study. HF-rTMS was delivered over the right M1, in 10 trains of 75 biphasic stimuli at 15 Hz, at 105-120% of the individual resting motor threshold (RMT). To assess safety, electromyography (EMG) was monitored to control for signs of spread of excitation and brief EMG burst (BEB) after stimulation. Additionally, TMS side effects questionnaires and the numeric rating scale (NRS) were administered during each session. We assessed corticospinal excitability (CSE) and motor performance changes with measures of resting (rMEP) and active (aMEP) motor evoked potential and grip strength and box and blocks test (BBT) scores, respectively. Overall, the sessions were tolerated and feasible without any pain development. However, EMG analysis during 15 Hz rTMS administration revealed increased BEB frequency with SI. Statistical models revealed an increase of CSE at rest (rMEP) but not during active muscle contraction (aMEP). No linear relationship was observed between 15 Hz rTMS SI and rMEP increase. No significant changes were highlighted for motor performance measures. Although feasible and tolerable by the AB individuals tested, the results demonstrate that when administered at suprathreshold intensities (≥ 105% RMT) the 15 Hz rTMS protocol reveals signs of persistent excitation, suggesting that safety precautions and close monitoring of participants should be performed when testing such combinations of high-intensity and high-frequency stimulation protocols. The results also give insight into the nonlinear existent relationship between the SI and HF-rTMS effects on CSE.NEW & NOTEWORTHY The results of this pilot study show the effects of a therapeutically promising 15 Hz repetitive transcranial magnetic stimulation (rTMS) protocol, administered at different suprathreshold intensities in able-bodied individuals. Although tolerable and feasible with a neuromodulatory potential, 15 Hz rTMS might result in persistent excitability that needs to be closely monitored if administered at suprathreshold stimulation intensity. These results reaffirm the importance of feasibility studies, especially in translational animal-to-human research.
Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Masculino , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Proyectos Piloto , Corteza Motora/fisiología , Electromiografía/métodos , Potenciales Evocados Motores/fisiologíaRESUMEN
Despite the success of cognitive behavioural therapy for insomnia and recent advances in pharmacotherapy, many patients with insomnia do not sufficiently respond to available treatments. This systematic review aims to present the state of science regarding the use of brain stimulation approaches in treating insomnia. To this end, we searched MEDLINE, Embase and PsycINFO from inception to 24 March 2023. We evaluated studies that compared conditions of active stimulation with a control condition or group. Outcome measures included standardized insomnia questionnaires and/or polysomnography in adults with a clinical diagnosis of insomnia. Our search identified 17 controlled trials that met inclusion criteria, and assessed a total of 967 participants using repetitive transcranial magnetic stimulation, transcranial electric stimulation, transcutaneous auricular vagus nerve stimulation or forehead cooling. No trials using other techniques such as deep brain stimulation, vestibular stimulation or auditory stimulation met the inclusion criteria. While several studies report improvements of subjective and objective sleep parameters for different repetitive transcranial magnetic stimulation and transcranial electric stimulation protocols, important methodological limitations and risk of bias limit their interpretability. A forehead cooling study found no significant group differences in the primary endpoints, but better sleep initiation in the active condition. Two transcutaneous auricular vagus nerve stimulation trials found no superiority of active stimulation for most outcome measures. Although modulating sleep through brain stimulation appears feasible, gaps in the prevailing models of sleep physiology and insomnia pathophysiology remain to be filled. Optimized stimulation protocols and proof of superiority over reliable sham conditions are indispensable before brain stimulation becomes a viable treatment option for insomnia.
Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Adulto , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Sueño , Polisomnografía , Encéfalo/fisiología , Resultado del TratamientoRESUMEN
INTRODUCTION: Functional pelvic floor disorders (PFD) such as bowel and bladder dysfunctions can be challenging to manage with our current therapeutic modalities. Recently, noninvasive brain stimulation has emerged as a novel strategy for noninvasive pelvic floor management. Here, we assessed the current state of research on this topic. METHODS: A scoping review was conducted with Pubmed, Web of Science, and Embase, in conjunction with clinicaltrials.gov, encompassing all manuscripts published without past time limit up until June 30, 2022. RESULTS: Of the 880 abstracts identified in a blind selection by two reviewers, 14 publications with an evidence level of 1 or 2 (Oxford scale) were eligible and included in this review. Review articles, case reports (<5 patients), letters, and protocol studies were excluded. PFDs were described as either pelvic pain or lower urinary tracts symptoms (LUTS) with repeated transcranial magnetic stimulation (rTMS) as the most common treatment modality. Despite heterogeneous therapeutic protocols, significant improvements were observed such as reduction in postvoid residual of urine, increased bladder capacity, improved voiding flow paraments, and decreased chronic pelvic, and bladder pain. No appreciable adverse effects were noted. However, low sample populations allowed only provisional conclusions. CONCLUSION: Noninvasive transcranial neurostimulation for LUTS and pelvic pain is emerging as an effective tool for clinicians to utilize in the future. Further investigation is needed to elucidate the full significance of the indicated outcomes.
Asunto(s)
Síntomas del Sistema Urinario Inferior , Trastornos del Suelo Pélvico , Femenino , Humanos , Micción/fisiología , Estimulación Magnética Transcraneal/efectos adversos , Encéfalo , Dolor Pélvico/terapiaRESUMEN
BACKGROUND: Noninvasive neurostimulation treatments are increasingly being used to treat major depression, which is a common cause of disability worldwide. While electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) are both effective in treating depressive episodes, their mechanisms of action are, however, not completely understood. ECT is given under general anesthesia, where an electrical pulse is administered through electrodes placed on the patient's head to trigger a seizure. ECT is used for the most severe cases of depression and is usually not prescribed before other options have failed. With TMS, brain stimulation is achieved through rapidly changing magnetic fields that induce electric currents underneath a ferromagnetic coil. Its efficacy in depressive episodes has been well documented. This project aims to identify the neurobiological underpinnings of both the effects and side effects of the neurostimulation techniques ECT and TMS. METHODS: The study will utilize a pre-post case control longitudinal design. The sample will consist of 150 subjects: 100 patients (bipolar and major depressive disorder) who are treated with either ECT (N = 50) or TMS (N = 50) and matched healthy controls (N = 50) not receiving any treatment. All participants will undergo multimodal magnetic resonance imaging (MRI) as well as neuropsychological and clinical assessments at multiple time points before, during and after treatment. Arterial spin labeling MRI at baseline will be used to test whether brain perfusion can predict outcomes. Signs of brain disruption, potentiation and rewiring will be explored with resting-state functional MRI, magnetic resonance spectroscopy and multishell diffusion weighted imaging (DWI). Clinical outcome will be measured by clinician assessed and patient reported outcome measures. Memory-related side effects will be investigated, and specific tests of spatial navigation to test hippocampal function will be administered both before and after treatment. Blood samples will be stored in a biobank for future analyses. The observation time is 6 months. Data will be explored in light of the recently proposed disrupt, potentiate and rewire (DPR) hypothesis. DISCUSSION: The study will contribute data and novel analyses important for our understanding of neurostimulation as well as for the development of enhanced and more personalized treatment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05135897.
Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Estimulación Magnética Transcraneal , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva/efectos adversos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Estimulación Magnética Transcraneal/efectos adversos , Resultado del Tratamiento , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/terapiaRESUMEN
OBJECTIVE: To systematically evaluate the impact of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on activities of daily living (ADLs) of patients with post-stroke cognitive impairment (PSCI). DATA SOURCES: Relevant studies published as of November 2022 (English and Chinese) were searched in Web of Science, PubMed, Embase, Cochrane Library, OVID, China Science and Technology Journal Database (VIP), Wanfang, Chinese National Knowledge Infrastructure (CNKI), and SinoMed databases. REVIEW METHODS: Randomized controlled trials (RCTs) that used HF-rTMS for the treatment of ADLs in patients with PSCI were included in this meta-analysis. Two reviewers independently screened literature, extracted the data, evaluated the risk of bias using the Cochrane Risk of Bias Tool, and cross-checked. RESULTS: Forty-one RCTs involving 2855 patients with PSCI were included. In 30 RCTs, the experimental group received HF-rTMS in addition to the interventions used in the control group. In 11 RCTs, the experimental group received HF-rTMS while the control group received sham-rTMS. Barthel Index (BI), Modified Barthel Index (MBI), and Functional Independence Measure (FIM) were higher in the HF-rTMS group than in the control group, whereas scores of Blessed Behavior Scale was lower in the HF-rTMS group than in the control group. All P < 0.05. In 36 studies, the stimulation sites were on the dorsolateral prefrontal cortex (DLPFC). CONCLUSION: HF-rTMS can ameliorate ADLs of patients with PSCI and has a better rehabilitation effect on PSCI.
Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Actividades Cotidianas , Estimulación Magnética Transcraneal/efectos adversos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , ChinaRESUMEN
OBJECTIVE: Behavioral and psychological symptoms of dementia (BPSD) are a group of noncognitive symptoms that occur commonly among individuals with dementia. These symptoms worsen the morbidity and mortality among individuals with dementia and significantly increase the cost of caring for these individuals. Transcranial magnetic stimulation (TMS) has been shown to have some benefits in the treatment of BPSD. This review provides an updated summary of the effect of TMS on BPSD. METHODS: We conducted a systematic review of PubMed, Cochrane, and Ovid databases on the use of TMS to treat BPSD. RESULTS: We found 11 randomized controlled studies that evaluated the use of TMS among individuals with BPSD. Three of these studies examined the effect of TMS on apathy, two of which showed significant benefit. Seven studies showed that TMS significantly improves BPSD: six using repetitive transcranial magnetic stimulation (rTMS) and one using transcranial direct current stimulation (tDCS). Four studies, two evaluating tDCS, one evaluating rTMS, and one evaluating intermittent theta-burst stimulation (iTBS) showed a nonsignificant impact of TMS on BPSD. Adverse events were predominantly mild and transitory in all studies. CONCLUSION: Available data from this review indicate that rTMS is beneficial for individuals with BPSD, especially among individuals with apathy, and is well tolerated. However, more data are needed to prove the efficacy of tDCS and iTBS. Additionally, more randomized controlled trials with longer treatment follow-up and standardized use of BPSD assessments are needed to determine the best dose, duration, and modality for effective treatment of BPSD.
Asunto(s)
Demencia , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Manejo del Dolor , Resultado del Tratamiento , Demencia/psicologíaRESUMEN
BACKGROUND: Patients with post-stroke memory disorder (PSMD) have poor quality of life and it is necessary to identify more beneficial stimulation protocols for treatment with repetitive transcranial magnetic stimulation (rTMS). This meta-analysis was conducted to investigate the efficacy and safety of rTMS for improving memory performance, global cognition, and activities of daily living (ADL) among patients with PSMD. METHODS: The PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang databases were screened to identify relevant randomized controlled trials. The primary outcome was memory performance; secondary outcomes included global cognition, ADL, and adverse events. STATA software was used to perform data synthesis. RESULTS: Five articles with a total of 192 participants were included. The results indicated that rTMS was superior to control treatments for improving memory performance (mean difference [MD] = 1.73, 95% CI [Confidence Interval] [0.85, 2.60], p < 0.001), global cognition (MD = 2.44, 95% CI [0.96, 3.93], p < 0.001), and ADL (MD = 10.29, 95% CI [5.10, 15.48], p < 0.001). No significant differences were found between the low-frequency (LF) and high-frequency (HF) rTMS subgroups (p = 0.47, I2 = 0.00%) or between the sham rTMS and non-rTMS subgroups (p = 0.94, I2 = 0.00%). Four studies did not reported adverse events. CONCLUSIONS: rTMS may improve memory function, global cognition, and the ability to perform ADL in patients with PSMD. LF-rTMS and HF-rTMS may have equal efficacy for treatment of PSMD. Future studies should consider extending the follow-up period to explore the safety and long-term efficacy of rTMS for treatment of PSMD and the appropriate choice of placebo for clinical trials of this treatment.
Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Actividades Cotidianas , Calidad de Vida , Trastornos de la Memoria/etiología , Trastornos de la Memoria/terapia , Memoria , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapiaRESUMEN
OBJECTIVE: To evaluate the efficacy and safety of noninvasive therapies in the treatment of central poststroke pain (CPSP) by network meta-analysis and to provide an evidence-based basis for clinical practice. METHODS: PubMed, Cochrane Library, EMBASE, CNKI, Wanfang, and VIP were searched for clinical randomized controlled studies on noninvasive therapy for CPSP. The retrieval time limit was from the establishment of each database to July 2022. The bias risk assessment tool recommended by Cochrane was used to evaluate the quality of the included randomized controlled trials (RCTs). Stata 14.0 was used for network meta-analysis, and Review Manager 5.3 software was used for traditional meta-analysis. RESULTS: Twelve RCTs involving 8 treatment schemes and 641 patients were finally included. The results of the network meta-analysis showed the following rankings in visual analysis scale (VAS): super laser injury on stellate ganglia (SLI) > transcranial direct current stimulation (tDCS) > music therapy (MT) > repetitive transcranial magnetic stimulation (rTMS) > continuous theta burst stimulation (cTBS) > transcutaneous acupoint electrical stimulation (TAES) > common therapy (CT). The total clinical efficiency ranked as follows: psychological training of mindfulness (PT) > rTMS > CT. Clinical adverse reactions ranked as follows: rTMS > MT > CT > SLI. CONCLUSIONS: Noninvasive complementary therapy can effectively alleviate the pain of CPSP patients, and the efficacy and safety of SLI are relatively significant. However, due to the limitations of this study, the efficacy ranking cannot fully explain the advantages and disadvantages of clinical efficacy. In the future, more multicentre, large sample, double-blind clinical randomized controlled trials are needed to supplement and demonstrate the results of this study.
Asunto(s)
Neuralgia , Estimulación Transcraneal de Corriente Directa , Humanos , Metaanálisis en Red , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Neuralgia/etiología , Manejo del Dolor/métodos , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) is Food and Drug Administration cleared for clinical use in treatment-resistant depression and a growing list of other disorders. The clinical uptake of rTMS has been facilitated by its relatively benign adverse-effect profile compared with other treatment modalities. Seizure is a rare but serious adverse event that has been reported with rTMS, when dosage exceeds safety guidelines or in individuals at increased risk for seizure. Fortunately, most rTMS-induced seizures are typically transient, with no adverse sequelae, but they may lead to treatment discontinuation. Seizure is not the only cause of loss of conscious and abnormal movements induced by rTMS. Convulsive syncope, a more common adverse event that involves loss of consciousness associated with myoclonic movements, can be difficult to differentiate from an rTMS-induced seizure. We report the case of a 52-year-old man with no known seizure risk factors, enrolled in an institutional review board-approved research study who developed what appeared to be a convulsive syncopal episode lasting 10 to 15 seconds during day 2 of a 30-day rTMS protocol (10 Hz, 120% of motor threshold, 4-second pulse train, 26-second intertrain interval, 3000 pulses per session), with no adverse sequelae. The patient's history, screening, physical examination, pertinent laboratory, neurology consult, electroencephalogram, and imaging findings are discussed. This case demonstrates that distinguishing between convulsive syncope and rTMS-induced seizure can be a diagnostic challenge. Clinicians and researchers delivering rTMS should be familiar with the risk factors for rTMS-induced seizures and rTMS-induced convulsive syncope, to screen for predisposing factors and to manage these rare adverse events if they occur.
Asunto(s)
Terapia Electroconvulsiva , Estimulación Magnética Transcraneal , Masculino , Humanos , Persona de Mediana Edad , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Convulsiones/diagnóstico , Convulsiones/etiología , Convulsiones/terapia , Síncope/etiología , Síncope/complicaciones , Factores de RiesgoRESUMEN
OBJECTIVES: Aphasia is an acquired language-cognitive disorder that highly affects an individual's speech, language, and communication skills. Recovery from aphasia requires attentive treatment since it is a long and dynamic process. This study aimed to show interactive benefits of combining classical intervention strategies with new technological approaches and demonstrating their effectiveness. MATERIALS AND METHODS: A total of 40 individuals with Broca's aphasia were included in the study. The participants were divided into Application-1 Speech and Language Therapy, Application-2 Transcranial Magnetic Stimulation, Application-3 (consecutive Transcranial Magnetic Stimulation and Speech and Language Therapy), and Application-4 (Control Group) experimental groups, with 10 participants in each group. RESULTS: Analysis indicated that individuals in the group in which Transcranial Magnetic Stimulation and Speech and Language Therapy were applied consecutively had further increases in speech fluency, repetition, and naming scores from pre-test to post-test (p<0.01). Picture naming and quality-of-life communication scores of individuals in the group in which Speech and Language Therapy was performed increased further from pre-test to post-test (p<0.01). CONCLUSIONS: The results of the study showed a positive effect on language skills, naming scores, and participation in social life of Turkish-speaking aphasic individuals with the Speech and Language Therapy and Transcranial Magnetic Stimulation methods. The use of Transcranial Magnetic Stimulation alone is insufficient in this context. Although Speech and Language Therapy alone is effective in naming ability, Transcranial Magnetic Stimulation in addition to Speech and Language Therapy significantly increases the gain obtained with therapies.
Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/efectos adversos , Terapia del Lenguaje , Habla , Afasia de Broca/diagnóstico , Afasia de Broca/terapia , Logopedia/métodosRESUMEN
Objective: To analyze the efficacy of different targets low-frequency repetitive transcranial magnetic stimulation (rTMS) for the treatment of tremor Parkinson's disease(PD). Method: A total of 82 patients with primary PD who were admitted to the Department of Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from April 1, 2020 to March 31, 2021 were prospectively collected. According to the clinical characteristics of major movement disorders, 82 patients with tremor type (TD) were selected to enroll.The patients were randomly divided into 3 groups at a 1â¶1â¶1 ratio according to the randomized coding sequence of the trial: the primary motor cortex (M1) group with 26 cases, the cerebellum group with 26 cases and the dual-site (M1, cerebellum) group with 30 cases. All patients were treated with 1 Hz low-frequency stimulation of the corresponding target once a day for 5 days a week for 2 weeks, a total of 10 times; The dosage remained unchanged during the treatment for all groups. Before and after 2 weeks' treatment, the patients were assessed with the Unified PD Rating Scale (UPDRS) and PD Quality of Life Questionnaire-39 (PDQ-39) without medication. Cortical excitability, namely transcranial magnetic stimulation motor evoked potential (TMS-MEP), [including resting motor threshold (rMT) and active motor threshold (aMT) examinations], timed up and go (TUG) and electromyographic tremor were conducted. Result: There were 82 patients, 39 males and 43 females, with an average age of (67±8) years. Before the treatment, there was no statistically significant difference in the evaluation indicators among the three groups (all P>0.05). After the treatment, the differences of the UPDRS-â ¢ score [(38.9±2.5) vs (29.2±3.6) ], UPDRS tremor score [(23.7±2.1) vs (14.6±3.1) ], TUG time [(44.8±3.1) s vs (33.7±4.1) s], tremor amplitude [(480±126) µV vs (276±94) µV], PDQ-39 score [(51±13) vs (45±13) ], rMT [(36±17)% vs (43±13)%], and aMT [(26±16)% vs (31±12)%] were statistically significant (all P<0.01) from those before the treatment. There was no statistical difference in the above factors between the M1 group and cerebellum group (all P>0.05). There was no statistically significant difference in tremor peak frequency among the three groups before and after the treatment (all P>0.05). Conclusions: Dual-site low-frequency rTMS can improve PD tremor, while M1 or cerebellar low-frequency rTMS does not significantly improve PD tremor. Its mechanism may be to improve PD tremor symptoms by regulating cortical excitability.
Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Enfermedad de Parkinson/terapia , Estimulación Magnética Transcraneal/efectos adversos , Temblor/terapia , Temblor/etiología , Calidad de Vida , Corteza Motora/fisiología , ChinaRESUMEN
Depression is a common condition which causes serious of morbidity among the population. While treatment is often provided with pharmacological antidepressants and psychotherapy, many patients do not respond to such treatment, and therefore algorithms have been proposed to develop treatments for resistant depression. Transcranial Magnetic Stimulation is a relatively new form of treatment for depression, which appear to have a good safety profile and appear to be acceptable to patients. Other forms of Brain Stimulation, such as Electro-Convulsive therapy, have a more complex safety profile, and require anaesthesia. Still other forms of electrical stimulation of the brain, such as Vagus nerve Stimulation are invasive in nature. The position of a particular modality of treatment in the Algorithm for the treatment of Resistant Depression depends on a balance between effectiveness of treatment, side effect profile, acceptability to the patients, availability of treatment, invasiveness of treatment, and the possibility of combining it with other treatments. Here we assess the position of Transcranial Magnetic Stimulation in such an Algorithm for the treatment of Resistant Depression. Given its effectiveness and its relatively good side effect profile, we suggest that it could be used early in the treatment of depression, however its use may be limited by lack of necessary equipment. On the other hand, Electro-convulsive therapy must be reserved for much more resistant cases, because of the need for anaesthesia and muscle relaxants, as well as its side effect profile, even though it might be somewhat more effective than the other modalities. Further study of Transcranial Magnetic Stimulation and are warranted.