Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.818
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 451-474, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556280

RESUMEN

The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Complejos Multiproteicos/química , Aire , Carbono/química , Difusión , Grafito/química , Lípidos/química , Complejos Multiproteicos/aislamiento & purificación , Desnaturalización Proteica , Manejo de Especímenes/métodos , Estreptavidina/química , Agua
2.
J Immunol ; 212(12): 1971-1980, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709159

RESUMEN

Most pancreatic islets are destroyed immediately after intraportal transplantation by an instant blood-mediated inflammatory reaction (IBMIR) generated through activation of coagulation, complement, and proinflammatory pathways. Thus, effective mitigation of IBMIR may be contingent on the combined use of agents targeting these pathways for modulation. CD47 and thrombomodulin (TM) are two molecules with distinct functions in regulating coagulation and proinflammatory responses. We previously reported that the islet surface can be modified with biotin for transient display of novel forms of these two molecules chimeric with streptavidin (SA), that is, thrombomodulin chimeric with SA (SA-TM) and CD47 chimeric with SA (SA-CD47), as single agents with improved engraftment following intraportal transplantation. This study aimed to test whether islets can be coengineered with SA-TM and SA-CD47 molecules as a combinatorial approach to improve engraftment by inhibiting IBMIR. Mouse islets were effectively coengineered with both molecules without a detectable negative impact on their viability and metabolic function. Coengineered islets were refractory to destruction by IBMIR ex vivo and showed enhanced engraftment and sustained function in a marginal mass syngeneic intraportal transplantation model. Improved engraftment correlated with a reduction in intragraft innate immune infiltrates, particularly neutrophils and M1 macrophages. Moreover, transcripts for various intragraft procoagulatory and proinflammatory agents, including tissue factor, HMGB1 (high-mobility group box-1), IL-1ß, IL-6, TNF-α, IFN-γ, and MIP-1α, were significantly reduced in coengineered islets. These data demonstrate that the transient codisplay of SA-TM and SA-CD47 proteins on the islet surface is a facile and effective platform to modulate procoagulatory and inflammatory responses with implications for both autologous and allogeneic islet transplantation.


Asunto(s)
Antígeno CD47 , Inflamación , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratones Endogámicos C57BL , Trombomodulina , Animales , Masculino , Ratones , Antígeno CD47/inmunología , Antígeno CD47/metabolismo , Inflamación/inmunología , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Estreptavidina
3.
Mol Cell Proteomics ; 23(1): 100689, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043703

RESUMEN

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but little is known about their origin and potential for biomarker discovery in this readily available biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited sensitivity, typically requiring several mL of plasma. Here, we take advantage of recent improvements in the throughput and sensitivity of mass spectrometry (MS)-based proteomics to develop a highly sensitive, automated, and economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5000 HLA class I peptides from only 200 µl of plasma, in just 30 min. Our technology revealed that the plasma immunopeptidome of healthy donors is remarkably stable throughout the year and strongly correlated between individuals with overlapping HLA types. Immunopeptides originating from diverse tissues, including the brain, are proportionately represented. We conclude that sHLAs are a promising avenue for immunology and potentially for precision oncology.


Asunto(s)
Neoplasias , Humanos , Estreptavidina , Medicina de Precisión , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA , Antígenos de Histocompatibilidad Clase II , Péptidos/metabolismo , Espectrometría de Masas , Anticuerpos
4.
Methods ; 225: 1-12, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428472

RESUMEN

Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.


Asunto(s)
Proteínas de la Membrana , Pliegue de Proteína , Termodinámica , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Desnaturalización Proteica , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Estreptavidina/química , Biotinilación/métodos
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969836

RESUMEN

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Conformación Proteica , Biotinilación , Membrana Celular , Microscopía por Crioelectrón , Proteínas de Unión al ADN , Endopeptidasas , Escherichia coli , Proteínas de Escherichia coli/química , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Estreptavidina
6.
Nano Lett ; 24(9): 2821-2830, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407052

RESUMEN

Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.


Asunto(s)
Oligopéptidos , Puntos Cuánticos , Virus , Estreptavidina , Virión
7.
J Proteome Res ; 23(4): 1531-1543, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38507741

RESUMEN

Proximity-dependent biotinylation (PDB) techniques provide information about the molecular neighborhood of a protein of interest, yielding insights into its function and localization. Here, we assessed how different labeling enzymes and streptavidin resins influence PDB results. We compared the high-confidence interactors of the DNA/RNA-binding protein transactive response DNA-binding protein 43 kDa (TDP-43) identified using either miniTurbo (biotin ligase) or APEX2 (peroxidase) enzymes. We also evaluated two commercial affinity resins for purification of biotinylated proteins: conventional streptavidin sepharose versus a new trypsin-resistant streptavidin conjugated to magnetic resin, which significantly reduces the level of contamination by streptavidin peptides following on-bead trypsin digestion. Downstream analyses involved liquid chromatography coupled to mass spectrometry in data-dependent acquisition mode, database searching, and statistical analysis of high-confidence interactors using SAINTexpress. The APEX2-TDP-43 experiment identified more interactors than miniTurbo-TDP-43, although miniTurbo provided greater overlap with previously documented TDP-43 interactors. Purifications on sepharose resin yielded more interactors than magnetic resin in small-scale experiments using a range of magnetic resin volumes. We suggest that resin-specific background protein binding profiles and different lysate-to-resin ratios cumulatively affect the distributions of prey protein abundance in experimental and control samples, which impact statistical confidence scores. Overall, we highlight key experimental variables to consider for the empirical optimization of PDB experiments.


Asunto(s)
Biotina , Proteínas de Unión al ADN , Biotinilación , Estreptavidina/química , Sefarosa , Tripsina , Biotina/química
8.
J Proteome Res ; 23(2): 618-632, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38226771

RESUMEN

Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 µg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Animales , Ratones , Proteómica/métodos , Biotina , Flujo de Trabajo , Estreptavidina , Reproducibilidad de los Resultados , Glicoproteínas de Membrana , Fenómenos Magnéticos , Proteoma
9.
J Biol Chem ; 299(1): 102726, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410438

RESUMEN

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.


Asunto(s)
Proteínas , Proteómica , Biotinilación , Poro Nuclear , Proteínas/química , Proteómica/métodos , Estreptavidina/química
10.
J Am Chem Soc ; 146(43): 29344-29354, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39418394

RESUMEN

We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.


Asunto(s)
ADN , ARN , Estreptavidina , ARN/química , ARN/metabolismo , ADN/química , ADN/metabolismo , Estreptavidina/química , Estreptavidina/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
11.
J Am Chem Soc ; 146(8): 5118-5127, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363821

RESUMEN

Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 µM) underlines potential interest of this nanoplatform for biomedical applications.


Asunto(s)
Biotina , Polietilenglicoles , Animales , Ratones , Nanogeles , Estreptavidina , Proteínas , ADN/metabolismo , Lípidos , Portadores de Fármacos
12.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698548

RESUMEN

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Asunto(s)
Biotina , Ciclooctanos , Imagen por Resonancia Magnética , Nanopartículas , Ciclooctanos/química , Humanos , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Células HeLa , Biotina/química , Animales , Imagen Óptica , Biotinilación , Ratones , Estreptavidina/química , Reacción de Cicloadición , Fluorescencia
13.
Mol Pain ; 20: 17448069241230419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246917

RESUMEN

In vivo analysis of protein function in nociceptor subpopulations using antisense oligonucleotides and short interfering RNAs is limited by their non-selective cellular uptake. To address the need for selective transfection methods, we covalently linked isolectin B4 (IB4) to streptavidin and analyzed whether it could be used to study protein function in IB4(+)-nociceptors. Rats treated intrathecally with IB4-conjugated streptavidin complexed with biotinylated antisense oligonucleotides for protein kinase C epsilon (PKCε) mRNA were found to have: (a) less PKCε in dorsal root ganglia (DRG), (b) reduced PKCε expression in IB4(+) but not IB4(-) DRG neurons, and (c) fewer transcripts of the PKCε gene in the DRG. This knockdown in PKCε expression in IB4(+) DRG neurons is sufficient to reverse hyperalgesic priming, a rodent model of chronic pain that is dependent on PKCε in IB4(+)-nociceptors. These results establish that IB4-streptavidin can be used to study protein function in a defined subpopulation of nociceptive C-fiber afferents.


Asunto(s)
Lectinas , Nociceptores , Ratas , Animales , Lectinas/metabolismo , Nociceptores/metabolismo , Estreptavidina/metabolismo , Ratas Sprague-Dawley , Fibras Nerviosas Amielínicas/metabolismo , Oligonucleótidos Antisentido/metabolismo , Ganglios Espinales/metabolismo
14.
Anal Chem ; 96(21): 8791-8799, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742926

RESUMEN

MicroRNAs (miRNAs) are novel tumor biomarkers owing to their important physiological functions in cell communication and the progression of multiple diseases. Due to the small molecular weight, short sequence length, and low concentration levels of miRNA, miRNA detection presents substantial challenges, requiring the advancement of more refined and sensitive techniques. There is an urgent demand for the development of a rapid, user-friendly, and sensitive miRNA analysis method. Here, we developed an enhanced biotin-streptavidin dual-mode phase imaging surface plasmon resonance (PI-SPR) aptasensor for sensitive and rapid detection of miRNA. Initially, we evaluated the linear sensing range for miRNA detection across two distinct sensing modalities and investigated the physical factors that influence the sensing signal in the aptamer-miRNA interaction within the PI-SPR aptasensor. Then, an enhanced biotin-streptavidin amplification strategy was introduced in the PI-SPR aptasensor, which effectively reduced the nonspecific adsorption by 20% and improved the limit of detection by 548 times. Furthermore, we have produced three types of tumor marker chips, which utilize the rapid sensing mode (less than 2 min) of PI-SPR aptasensor to achieve simultaneous detection of multiple miRNA markers in the serum from clinical cancer patients. This work not only developed a new approach to detect miRNA in different application scenarios but also provided a new reference for the application of the biotin-streptavidin amplification system in the detection of other small biomolecules.


Asunto(s)
Aptámeros de Nucleótidos , Biotina , MicroARNs , Estreptavidina , Resonancia por Plasmón de Superficie , MicroARNs/análisis , MicroARNs/sangre , Biotina/química , Resonancia por Plasmón de Superficie/métodos , Estreptavidina/química , Humanos , Aptámeros de Nucleótidos/química , Límite de Detección , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos
15.
Chembiochem ; 25(3): e202300575, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963820

RESUMEN

Salmonella constitutes a prevalent alimentary pathogen, instigating zoonotic afflictions. Consequently, the prompt discernment of Salmonella in sustenance is of cardinal significance. Lateral flow assays utilizing colorimetric methodologies adequately fulfill the prerequisites of point-of-care diagnostics, however, their detection threshold remains elevated, generally permitting only qualitative discernment, an impediment to the preliminary screening of nascent pathogens. In response to this conundrum, we propose a lateral flow diagnostic predicated upon a streptavidin-biotin amplification system with recombinase polymerase amplification engineered for the expeditious and quantitative discernment of Salmonella enteritidis. Trace nucleic acids within a sample undergo exponential amplification via recombinase polymerase amplification to a level discernable, constituting the initial signal amplification. Subsequently, along the test line (T-line) of the lateral flow strip, the chromatic signal undergoes augmentation by securing a greater quantity of AuNPs through the magnification capacity of the streptavidin-biotin mechanism, affecting the second signal amplification. Quantitative results are procured via smartphone capture and transferred to computer software for precise calculation of the targeted quantity. The lateral flow strip exhibits a LOD at 19.41 CFU/mL for cultured S. enteritidis. The RSD of three varying concentrations were respectively 3.74 %, 5.96 %, and 4.25 %.


Asunto(s)
Nanopartículas del Metal , Salmonella enteritidis , Salmonella enteritidis/genética , Biotina , Estreptavidina , Recombinasas , Oro , Nucleotidiltransferasas , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
16.
Chemistry ; 30(39): e202401165, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38752552

RESUMEN

An Artificial Metalloenzyme (ArM) built employing the streptavidin-biotin technology has been used for the enantioselective synthesis of binaphthyls by means of asymmetric Suzuki-Miyaura cross-coupling reactions. Despite its success, it remains a challenge to understand how the length of the biotin cofactors or the introduction of mutations to streptavidin leads the preferential synthesis of one atropisomer over the other. In this study, we apply an integrated computational modeling approach, including DFT calculations, protein-ligand dockings and molecular dynamics to rationalize the impact of mutations and length of the biotion cofactor on the enantioselectivities of the biaryl product. The results unravel that the enantiomeric differences found experimentally can be rationalized by the disposition of the first intermediate, coming from the oxidative addition step, and the entrance of the second substrate. The work also showcases the difficulties facing to control the enantioselection when engineering ArM to catalyze enantioselective Suzuki-Miyaura couplings and how the combination of DFT calculations, molecular dockings and MD simulations can be used to rationalize artificial metalloenzymes.


Asunto(s)
Teoría Funcional de la Densidad , Simulación de Dinámica Molecular , Estreptavidina , Estereoisomerismo , Estreptavidina/química , Estreptavidina/metabolismo , Catálisis , Biotina/química , Biotina/análogos & derivados , Ligandos , Simulación del Acoplamiento Molecular , Metaloproteínas/química , Metaloproteínas/metabolismo
17.
Biomed Microdevices ; 26(4): 39, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287824

RESUMEN

Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Microburbujas , Técnicas Biosensibles/instrumentación , Estreptavidina/química
18.
Bioorg Med Chem Lett ; 108: 129803, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38777280

RESUMEN

Targeted delivery of radionuclides to tumors is significant in theranostics applications for precision medicine. Pre-targeting, in which a tumor-targeting vehicle and a radionuclide-loaded effector small molecule are administered separately, holds promise since it can reduce unnecessary internal radiation exposure of healthy cells and can minimize radiation decay. The success of the pre-targeting delivery requires an in vivo-stable tumor-targeting vehicle selectively binding to tumor antigens and an in vivo-stable small molecule effector selectively binding to the vehicle accumulated on the tumor. We previously reported a drug delivery system composed of a low-immunogenic streptavidin with weakened affinity to endogenous biotin and a bis-iminobiotin with high affinity to the engineered streptavidin. It was, however, unknown whether the bis-iminobiotin is stable in vivo when administered alone for the pre-targeting applications. Here we report a new in vivo-stable bis-iminobiotin derivative. The keys to success were the identification of the degradation site of the original bis-iminobiotin treated with mouse plasma and the structural modification of the degradation site. We disclosed the successful pre-targeting delivery of astatine-211 (211At), α-particle emitter, to the CEACAM5-positive tumor in xenograft mouse models.


Asunto(s)
Biotina , Estreptavidina , Animales , Estreptavidina/química , Ratones , Biotina/química , Humanos , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral , Mutación , Estructura Molecular
19.
Inorg Chem ; 63(10): 4604-4613, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38395777

RESUMEN

Nontoxic, highly sensitive InP quantum dot (QD) fluorescent immunoassay probes are promising biomedical detection modalities due to their unique properties. However, InP-based QDs are prone to surface oxidation, and the stability of InP QD-based probes in biocompatible environments remains a crucial challenge. Although the thick shell can provide some protection during the phase transfer process of hydrophobic QDs, the photoluminescence quantum yield (PLQY) is generally decreased because of the contradiction between lattice stress relaxation and thick shell growth. Herein, we developed thick-shell InP-based core/shell QDs by inserting a ZnSeS alloy layer. The ternary ZnSeS intermediate shell could effectively facilitate lattice stress relaxation and passivate the defect states. The synthesized InP/ZnSe/ZnSeS/ZnS core/alloy shell/shell QDs (CAS-InP QDs) with nanostructure tailoring revealed a larger size, high PLQY (90%), and high optical stability. After amphiphilic polymer encapsulation, the aqueous CAS-InP QDs presented almost constant fluorescence attenuation and stable PL intensity under different temperatures, UV radiation, and pH solutions. The CAS-InP QDs were excellent labels of the fluorescence-linked immunosorbent assay (FLISA) for detecting C-reactive protein (CRP). The biotin-streptavidin (Bio-SA) system was first introduced in the FLISA to further improve the sensitivity, and the CAS-InP QDs-based SA-Bio sandwich FLISA realized the detection of CRP with an impressive limit of detection (LOD) of 0.83 ng/mL. It is believed that the stable and sensitive InP QD fluorescent probes will drive the rapid development of future eco-friendly, cost-effective, and sensitive in vitro diagnostic kits.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Biotina , Estreptavidina , Colorantes Fluorescentes , Aleaciones
20.
J Phys Chem A ; 128(25): 4999-5008, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38875485

RESUMEN

DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multimeric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of different multimeric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αß positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.


Asunto(s)
ADN , Nanoestructuras , Puntos Cuánticos , ADN/química , Nanoestructuras/química , Sitios de Unión , Puntos Cuánticos/química , Conformación de Ácido Nucleico , Nanotecnología/métodos , Estreptavidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA