Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811816

RESUMEN

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Masculino
2.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38925114

RESUMEN

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Asunto(s)
Factor 3 Regulador del Interferón , Interferones , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Humanos , Interferones/metabolismo , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/genética , Dominios Proteicos , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Secuencias de Aminoácidos , Proteínas Quinasas Activadas por Mitógenos/metabolismo
3.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917796

RESUMEN

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Asunto(s)
Factor 3 Regulador del Interferón , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Ubiquitinación , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Células HEK293 , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/virología , Inmunidad Innata , Interacciones Huésped-Patógeno , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Interferones/metabolismo , Interferones/inmunología , Interferones/genética , Retroalimentación Fisiológica , Ratones Endogámicos C57BL , Exodesoxirribonucleasas , Fosfoproteínas
4.
Mol Cell ; 84(11): 2203-2213.e5, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749421

RESUMEN

The cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in innate immune responses to viral infection and inhibition of autoimmunity. Recent studies have suggested that micronuclei formed by genotoxic stress can activate innate immune signaling via the cGAS-STING pathway. Here, we investigated cGAS localization, activation, and downstream signaling from micronuclei induced by ionizing radiation, replication stress, and chromosome segregation errors. Although cGAS localized to ruptured micronuclei via binding to self-DNA, we failed to observe cGAS activation; cGAMP production; downstream phosphorylation of STING, TBK1, or IRF3; nuclear accumulation of IRF3; or expression of interferon-stimulated genes. Failure to activate the cGAS-STING pathway was observed across primary and immortalized cell lines, which retained the ability to activate the cGAS-STING pathway in response to dsDNA or modified vaccinia virus infection. We provide evidence that micronuclei formed by genotoxic insults contain histone-bound self-DNA, which we show is inhibitory to cGAS activation in cells.


Asunto(s)
Segregación Cromosómica , Proteínas de la Membrana , Micronúcleos con Defecto Cromosómico , Nucleótidos Cíclicos , Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Nucleótidos Cíclicos/metabolismo , Fosforilación , Replicación del ADN/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Inmunidad Innata/efectos de la radiación , Daño del ADN , Células HEK293 , Animales , Radiación Ionizante , Células HeLa
5.
EMBO J ; 43(5): 780-805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316991

RESUMEN

Inflammation is a common condition of prostate tissue, whose impact on carcinogenesis is highly debated. Microbial colonization is a well-documented cause of a small percentage of prostatitis cases, but it remains unclear what underlies the majority of sterile inflammation reported. Here, androgen- independent fluctuations of PSA expression in prostate cells have lead us to identify a prominent function of the Transient Receptor Potential Cation Channel Subfamily M Member 8 (TRPM8) gene in sterile inflammation. Prostate cells secret TRPM8 RNA into extracellular vesicles (EVs), which primes TLR3/NF-kB-mediated inflammatory signaling after EV endocytosis by epithelial cancer cells. Furthermore, prostate cancer xenografts expressing a translation-defective form of TRPM8 RNA contain less collagen type I in the extracellular matrix, significantly more infiltrating NK cells, and larger necrotic areas as compared to control xenografts. These findings imply sustained, androgen-independent expression of TRPM8 constitutes as a promoter of anticancer innate immunity, which may constitute a clinically relevant condition affecting prostate cancer prognosis.


Asunto(s)
Neoplasias de la Próstata , Canales Catiónicos TRPM , Humanos , Masculino , Andrógenos , Inflamación/genética , Factor 3 Regulador del Interferón , Proteínas de la Membrana , FN-kappa B/genética , Neoplasias de la Próstata/genética , Receptor Toll-Like 3/genética , Canales Catiónicos TRPM/genética , Animales
6.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985760

RESUMEN

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Asunto(s)
Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de la Membrana , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Transporte de Proteínas , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones Noqueados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
J Cell Sci ; 137(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682259

RESUMEN

SARS-CoV-2 interferes with antigen presentation by downregulating major histocompatibility complex (MHC) II on antigen-presenting cells, but the mechanism mediating this process is unelucidated. Herein, analysis of protein and gene expression in human antigen-presenting cells reveals that MHC II is downregulated by the SARS-CoV-2 main protease, NSP5. This suppression of MHC II expression occurs via decreased expression of the MHC II regulatory protein CIITA. CIITA downregulation is independent of the proteolytic activity of NSP5, and rather, NSP5 delivers HDAC2 to the transcription factor IRF3 at an IRF-binding site within the CIITA promoter. Here, HDAC2 deacetylates and inactivates the CIITA promoter. This loss of CIITA expression prevents further expression of MHC II, with this suppression alleviated by ectopic expression of CIITA or knockdown of HDAC2. These results identify a mechanism by which SARS-CoV-2 limits MHC II expression, thereby delaying or weakening the subsequent adaptive immune response.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Histona Desacetilasa 2 , Proteínas Nucleares , Regiones Promotoras Genéticas , SARS-CoV-2 , Transactivadores , Humanos , Presentación de Antígeno/genética , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/inmunología , COVID-19/virología , COVID-19/inmunología , COVID-19/genética , COVID-19/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Regulación hacia Abajo/genética , Células HEK293 , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/inmunología , Transactivadores/metabolismo , Transactivadores/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética
8.
PLoS Pathog ; 20(5): e1012227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739631

RESUMEN

IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , Proteínas de Pez Cebra , Pez Cebra , Animales , Factor 3 Regulador del Interferón/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Infecciones por Rhabdoviridae/inmunología , Fosforilación , Ubiquitinación , Humanos , Autofagia/inmunología
9.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776321

RESUMEN

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína 58 DEAD Box , Interferón Tipo I , Macrófagos , Ratones Noqueados , Infecciones por Virus ARN , Ubiquitinas , Animales , Macrófagos/virología , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteína 58 DEAD Box/metabolismo , Interferón Tipo I/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Citocinas/metabolismo , Ratones Endogámicos C57BL , Humanos , Receptores Inmunológicos/metabolismo , Interferón beta/metabolismo , Virus ARN/inmunología , Factor 3 Regulador del Interferón/metabolismo
10.
J Biol Chem ; 300(5): 107249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556084

RESUMEN

Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Inmunidad Innata , Receptor Toll-Like 3 , Proteínas de Motivos Tripartitos , Animales , Humanos , Ratones , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , FN-kappa B/metabolismo , Fosforilación , Poli I-C/farmacología , Dominios Proteicos , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
11.
J Virol ; 98(5): e0031724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38624231

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.


Asunto(s)
Apoptosis , Inmunidad Innata , Factor 3 Regulador del Interferón , Interferones , Proteínas no Estructurales Virales , Animales , Porcinos , Humanos , Interferones/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Interferón lambda , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Alphacoronavirus/metabolismo , Caspasa 3/metabolismo , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/metabolismo , Células Vero , Transducción de Señal , Chlorocebus aethiops , Células HEK293
12.
J Virol ; 98(7): e0035624, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38837380

RESUMEN

The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-ß) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-ß gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-ß gene expression. Overall, we assign a new mitochondria and IFN-ß signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE: Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.


Asunto(s)
Adenovirus Humanos , Proteínas de la Cápside , ADN Mitocondrial , Interferón beta , Mitocondrias , Transducción de Señal , Humanos , Adenovirus Humanos/fisiología , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Interferón beta/metabolismo , Interferón beta/genética , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Infecciones por Adenovirus Humanos/virología , Infecciones por Adenovirus Humanos/metabolismo , Membranas Mitocondriales/metabolismo , Células HEK293 , Fosforilación , Citosol/metabolismo , Citosol/virología
13.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421179

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Asunto(s)
FN-kappa B , Síndrome de Trombocitopenia Febril Grave , Humanos , FN-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal/genética , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Interferones/metabolismo , Antivirales , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 44(6): 1365-1378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695170

RESUMEN

BACKGROUND: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release. METHODS: ApoE-/- and Gsdmd-/- ApoE-/- mice, bone marrow transplantation, and AAV (adeno-associated virus serotype 9)-F4/80-shGSDMD (shRNA-GSDMD) were used to examine the effect of macrophage-derived GSDMD on atherosclerosis. Single-cell RNA sequencing was used to investigate the changing profile of different cellular components and the cellular localization of GSDMD during atherosclerosis. RESULTS: First, we found that GSDMD is activated in human and mouse atherosclerotic plaques and Gsdmd-/- attenuates the atherosclerotic lesion area in high-fat diet-fed ApoE-/- mice. We performed single-cell RNA sequencing of ApoE-/- and Gsdmd-/- ApoE-/- mouse aortas and showed that GSDMD is principally expressed in atherosclerotic macrophages. Using bone marrow transplantation and AAV-F4/80-shGSDMD, we identified the potential role of macrophage-derived GSDMD in aortic pyroptosis and atherosclerotic injuries in vivo. Mechanistically, GSDMD contributes to mitochondrial perforation and mitochondrial DNA leakage and subsequently activates the STING (stimulator of interferon gene)-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) axis. Meanwhile, GSDMD regulates the STING pathway activation and macrophage migration via cytokine secretion. Inhibition of GSDMD with GSDMD-specific inhibitor GI-Y1 (GSDMD inhibitor Y1) can effectively alleviate the progression of atherosclerosis. CONCLUSIONS: Our study has provided a novel macrophage-derived GSDMD mechanism in the promotion of atherosclerosis and demonstrated that GSDMD can be a potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Factor 3 Regulador del Interferón , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitocondrias , FN-kappa B , Proteínas de Unión a Fosfato , Piroptosis , Transducción de Señal , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones , FN-kappa B/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones Noqueados para ApoE , Placa Aterosclerótica , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/prevención & control , Gasderminas
15.
Brain ; 147(7): 2552-2565, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38366606

RESUMEN

Chronic varicella zoster virus (VZV) infection induced neuroinflammatory condition is the critical pathology of post-herpetic neuralgia (PHN). The immune escape mechanism of VZV remains elusive. As to mice have no VZV infection receptor, herpes simplex virus type 1 (HSV-1) infection is a well established PHN mice model. Transcriptional expression analysis identified that the protein arginine methyltransferases 6 (Prmt6) was upregulated upon HSV-1 infection, which was further confirmed by immunofluorescence staining in spinal dorsal horn. Prmt6 deficiency decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load in vivo and in vitro. Overexpression of Prmt6 in microglia dampened antiviral innate immunity and increased HSV-1 load. Mechanistically, Prmt6 methylated and inactivated STING, resulting in reduced phosphorylation of TANK binding kinase-1 (TBK1) and interferon regulatory factor 3 (IRF3), diminished production of type I interferon (IFN-I) and antiviral innate immunity. Furthermore, intrathecal or intraperitoneal administration of the Prmt6 inhibitor EPZ020411 decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load. Our findings revealed that HSV-1 escapes antiviral innate immunity and results in PHN by upregulating Prmt6 expression and inhibiting the cGAS-STING pathway, providing novel insights and a potential therapeutic target for PHN.


Asunto(s)
Herpesvirus Humano 1 , Proteínas de la Membrana , Neuralgia Posherpética , Nucleotidiltransferasas , Proteína-Arginina N-Metiltransferasas , Regulación hacia Arriba , Animales , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Neuralgia Posherpética/metabolismo , Neuralgia Posherpética/inmunología , Ratones Endogámicos C57BL , Inmunidad Innata , Humanos , Ratones Noqueados , Masculino , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Herpes Simple/inmunología , Microglía/metabolismo , Microglía/inmunología , Proteínas Serina-Treonina Quinasas
16.
Biochemistry ; 63(6): 767-776, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38439718

RESUMEN

Interferon regulatory factor 4 (IRF4) is a crucial transcription factor that plays a vital role in lymphocyte development, including in the fate-determining steps in terminal differentiation. It is also implicated in the development of lymphoid tumors such as multiple myeloma and adult T-cell leukemia. IRF4 can form a homodimer and multiple heterocomplexes with other transcription factors such as purine-rich box1 and activator protein 1. Each protein complex binds to specific DNA sequences to regulate a distinct set of genes. However, the precise relationship among these complex formations remains unclear. Herein, we investigated the abilities of IRF4 proteins with functional mutations in the IRF-association domain and autoinhibitory region to form complexes using luciferase reporter assays. The assays allowed us to selectively assess the activity of each complex. Our results revealed that certain IRF-association domain mutants, previously known to have impaired heterocomplex formation, maintained or even enhanced homodimer activity. This discrepancy suggests that the mutated amino acid residues selectively influence homodimer activity. Conversely, a phosphomimetic serine mutation in the autoinhibitory region displayed strong activating effects in all complexes. Furthermore, we observed that partner proteins involved in heterocomplex formation could disrupt the activity of the homodimer, suggesting a potential competition between homocomplexes and heterocomplexes. Our findings provide new insights into the mechanistic function of IRF4.


Asunto(s)
Regulación de la Expresión Génica , Factores Reguladores del Interferón , Secuencia de Bases , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Mutación , Factor de Transcripción AP-1/metabolismo , Humanos , Células HEK293
17.
Immunology ; 172(2): 295-312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453210

RESUMEN

Hyperactivation of the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS-STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti-inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow-derived macrophages (BMDMs), THP-1 (Tohoku Hospital Pediatrics-1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS-STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN-ß, CXCL10 and ISG15) and pro-inflammatory cytokines (IL-6 and TNF-α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK-binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS-STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non-alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS-STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS-STING signalling pathway.


Asunto(s)
Epimedium , Flavonoides , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Flavonoides/farmacología , Epimedium/química , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Citocinas/metabolismo , Células THP-1 , Proteínas Serina-Treonina Quinasas/metabolismo , Antiinflamatorios/farmacología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos
18.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167082

RESUMEN

Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes a highly common but mild infection characterized by distinctive and persistent papular skin lesions. These lesions can persist for long periods without an effective clearance response from the host. MCV, like all poxviruses, encodes multiple known immunosuppressive proteins which target innate immune signalling pathways involved in viral nucleic acid sensing, interferon production and inflammation which should trigger antiviral immunity leading to clearance. Two major families of transcription factors responsible for driving the immune response to viruses are the NF-κB and the interferon regulatory factor (IRF) families. While NF-κB broadly drives pro-inflammatory gene expression and IRFs chiefly drive interferon induction, both collaborate in transactivating many of the same genes in a concerted immune response to viral infection. Here, we report that the MCV protein MC089 specifically inhibits IRF activation from both DNA- and RNA-sensing pathways, making it the first characterized MCV inhibitor to selectively target IRF activation to date. MC089 interacts with proteins required for IRF activation, namely IKKε, TBKBP1 and NAP1. Additionally, MC089 targets RNA sensing by associating with the RNA-sensing adaptor protein mitochondrial antiviral-signalling protein on mitochondria. MC089 displays specificity in its inhibition of IRF3 activation by suppressing immunostimulatory nucleic acid-induced serine 396 phosphorylation without affecting the phosphorylation of serine 386. The selective interaction of MC089 with IRF-regulatory proteins and site-specific inhibition of IRF3 phosphorylation may offer a tool to provide novel insights into the biology of IRF3 regulation.


Asunto(s)
Factor 3 Regulador del Interferón , Virus del Molusco Contagioso , Proteínas Virales , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Virus del Molusco Contagioso/inmunología , Virus del Molusco Contagioso/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Transducción de Señal , Inmunidad Innata , Células HEK293 , Interacciones Huésped-Patógeno/inmunología
19.
Biochem Biophys Res Commun ; 712-713: 149945, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640732

RESUMEN

ORF3b is one of the SARS-CoV-2 accessory proteins. Previous experimental study suggested that ORF3b prevents IRF3 translocating to nucleus. However, the biophysical mechanism of ORF3b-IRF3 interaction is elusive. Here, we explored the conformation ensemble of ORF3b using all-atom replica exchange molecular dynamics simulation. Disordered ORF3b has mixed α-helix, ß-turn and loop conformers. The potential ORF3b-IRF3 binding modes were searched by docking representative ORF3b conformers with IRF3, and 50 ORF3b-IRF3 complex poses were screened using molecular dynamics simulations ranging from 500 to 1000 ns. We found that ORF3b binds IRF3 predominantly on its CBP binding and phosphorylated pLxIS motifs, with CBP binding site has the highest binding affinity. The ORF3b-IRF3 binding residues are highly conserved in SARS-CoV-2. Our results provided biophysics insights into ORF3b-IRF3 interaction and explained its interferon antagonism mechanism.


Asunto(s)
Factor 3 Regulador del Interferón , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/química , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Conformación Proteica
20.
Biochem Biophys Res Commun ; 712-713: 149915, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38663038

RESUMEN

Viral infections pose a significant threat to public health, and the production of interferons represents one of the most critical antiviral innate immune responses of the host. Consequently, the screening and identification of compounds or reagents that induce interferon production are of paramount importance. This study commenced with the cultivation of host bacterium 15,597, followed by the infection of Escherichia coli with the MS2 bacteriophage. Utilizing the J2 capture technique, a class of dsRNA mixtures (MS2+15,597) was isolated from the E. coli infected with the MS2 bacteriophage. Subsequent investigations were conducted on the immunostimulatory activity of the MS2+15,597 mixture. The results indicated that the dsRNA mixtures (MS2+15,597) extracted from E. coli infected with the MS2 bacteriophage possess the capability to activate innate immunity, thereby inducing the production of interferon-ß. These dsRNA mixtures can activate the RIG-I and TLR3 pattern recognition receptors, stimulating the expression of interferon stimulatory factors 3/7, which in turn triggers the NF-κB signaling pathway, culminating in the cellular production of interferon-ß to achieve antiviral effects. This study offers novel insights and strategies for the development of broad-spectrum antiviral drugs, potentially providing new modalities for future antiviral therapies.


Asunto(s)
Escherichia coli , Levivirus , ARN Bicatenario , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Bicatenario/metabolismo , Humanos , Levivirus/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Inmunidad Innata , Interferón beta/metabolismo , Interferón beta/genética , FN-kappa B/metabolismo , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Transducción de Señal , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Receptores Inmunológicos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA