RESUMEN
Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.
Asunto(s)
Infertilidad Masculina , Células Intersticiales del Testículo , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Testículo , Testosterona , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Ratones , Testosterona/metabolismo , Testículo/metabolismo , Testículo/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Infertilidad Masculina/metabolismo , Diferenciación Celular/genética , Espermatogénesis/genética , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
BACKGROUND: Post-translational modification pathway of protein ubiquitination is intricately associated with tumorigenesis. We previously reported elevated ubiquitin-conjugating enzyme 2T (UBE2T) as an independent risk factor in stage I lung adenocarcinoma and promoting cellular proliferation. However, its underlying mechanisms needed further investigation. METHODS: Immunohistochemistry was used to assess the expression of UBE2T and retinoic acid receptor-related orphan receptor α (RORA) in stage I LUAD. Cell proliferation, migration, and invasion of LUAD cell lines were measured by Cell Counting Kit-8 assay (CCK-8), Colony-forming assay and Transwell assay, respectively. Western blot analysis was performed to determine the expression of epithelial-mesenchymal transition (EMT) markers. A xenograft model was established to evaluate the proliferative capacity of UBE2T and its interaction with RORA in promoting LUAD. Mechanistic insights into the promotion of early-stage LUAD by UBE2T were obtained through luciferase reporter assay, chromatin immunoprecipitation and co-immunoprecipitation. RESULTS: UBE2T and RORA expression was significantly up- and down-regulated in early-stage LUAD patients which's proved to be associated with unfavorable outcomes, strengthened cell proliferation, migration, EMT and invasion through its interaction with RORA both in vivo and in vitro. The growth NSCLC xenografts was reduced by down-expression of UBE2T but was suppressed by RORA knockout. Mechanistically, UBE2T mediated the ubiquitination of the intermediate transcription factor PBX1, which played a transcriptional role in downstream regulation of RORA. CONCLUSION: The oncogenic role of UBE2T and the UBE2T-PBX1-RORA axis in driving malignant progression in Stage I LUAD had been established. UBE2T might be a novel and promising therapeutic target for LUAD treatment.
Asunto(s)
Adenocarcinoma del Pulmón , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Humanos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Ratones , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Línea Celular Tumoral , Femenino , Movimiento Celular , Estadificación de Neoplasias , Masculino , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Ratones Desnudos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores NuclearesRESUMEN
We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.
Asunto(s)
Corteza Cerebral/embriología , Redes Reguladoras de Genes , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Animales , Factor de Transcripción COUP I/metabolismo , Corteza Cerebral/metabolismo , Epigenoma , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factores de Transcripción/genéticaRESUMEN
Neuronal specification is a protracted process that begins with the commitment of progenitor cells and culminates with the generation of mature neurons. Many transcription factors are continuously expressed during this process but it is presently unclear how these factors modify their targets as cells transition through different stages of specification. In olfactory bulb adult neurogenesis, the transcription factor PBX1 controls neurogenesis in progenitor cells and the survival of migrating neuroblasts. Here, we show that, at later differentiation stages, PBX1 also acts as a terminal selector for the dopaminergic neuron fate. PBX1 is also required for the morphological maturation of dopaminergic neurons and to repress alternative interneuron fates, findings that expand the known repertoire of terminal-selector actions. Finally, we reveal that the temporal diversification of PBX1 functions in neuronal specification is achieved, at least in part, through the dynamic regulation of alternative splicing. In Caenorhabditis elegans, PBX/CEH-20 also acts as a dopaminergic neuron terminal selector, which suggests an ancient role for PBX factors in the regulation of terminal differentiation of dopaminergic neurons.
Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Bulbo Olfatorio/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Neuronas Dopaminérgicas/citología , Embrión de Mamíferos/citología , Exones/genética , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Ratones Noqueados , Mitosis , Mutación/genética , Neurogénesis , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN/genética , Factores de Transcripción/metabolismoRESUMEN
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Asunto(s)
Proteínas de Homeodominio , Factor de Transcripción 1 de la Leucemia de Células Pre-B , Factores de Transcripción , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Fenotipo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Asunto(s)
Lampreas/genética , Tubo Neural/embriología , Rombencéfalo/embriología , Animales , Sitios de Unión , Tipificación del Cuerpo/genética , Secuencia Conservada , Elementos de Facilitación Genéticos , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas de Homeodominio/metabolismo , Lampreas/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Cresta Neural/metabolismo , Tubo Neural/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9+/Scx+ superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9+/Scx+ progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Huesos/anatomía & histología , Huesos/embriología , Genes del Desarrollo , Proteínas de Homeodominio/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Óseo/genética , Huesos/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes del Desarrollo/genética , Proteínas de Homeodominio/metabolismo , Ligamentos/anatomía & histología , Ligamentos/embriología , Ligamentos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Embarazo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Tendones/anatomía & histología , Tendones/embriología , Tendones/metabolismoRESUMEN
BACKGROUND: Tbx2 encodes a transcriptional repressor implicated in the development of numerous organs in mouse. During lung development TBX2 maintains the proliferation of mesenchymal progenitors, and hence, epithelial proliferation and branching morphogenesis. The pro-proliferative function was traced to direct repression of the cell-cycle inhibitor genes Cdkn1a and Cdkn1b, as well as of genes encoding WNT antagonists, Frzb and Shisa3, to increase pro-proliferative WNT signaling. Despite these important molecular insights, we still lack knowledge of the DNA occupancy of TBX2 in the genome, and of the protein interaction partners involved in transcriptional repression of target genes. METHODS: We used chromatin immunoprecipitation (ChIP)-sequencing and expression analyses to identify genomic DNA-binding sites and transcription units directly regulated by TBX2 in the developing lung. Moreover, we purified TBX2 containing protein complexes from embryonic lung tissue and identified potential interaction partners by subsequent liquid chromatography/mass spectrometry. The interaction with candidate proteins was validated by immunofluorescence, proximity ligation and individual co-immunoprecipitation analyses. RESULTS: We identified Il33 and Ccn4 as additional direct target genes of TBX2 in the pulmonary mesenchyme. Analyzing TBX2 occupancy data unveiled the enrichment of five consensus sequences, three of which match T-box binding elements. The remaining two correspond to a high mobility group (HMG)-box and a homeobox consensus sequence motif. We found and validated binding of TBX2 to the HMG-box transcription factor HMGB2 and the homeobox transcription factor PBX1, to the heterochromatin protein CBX3, and to various members of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex including HDAC1, HDAC2 and CHD4. CONCLUSION: Our data suggest that TBX2 interacts with homeobox and HMG-box transcription factors as well as with the NuRD chromatin remodeling complex to repress transcription of anti-proliferative genes in the pulmonary mesenchyme.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genómica , Pulmón/metabolismo , Proteómica , Proteínas de Dominio T Box/metabolismo , Animales , Sitios de Unión , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Proliferación Celular , Secuenciación de Inmunoprecipitación de Cromatina , Cromatografía Liquida , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Células HEK293 , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Humanos , Interleucina-33/genética , Interleucina-33/metabolismo , Pulmón/embriología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Proteínas de Dominio T Box/genética , Espectrometría de Masas en TándemRESUMEN
The transcription factor nuclear factor interleukin-3-regulated protein (NFIL3, also called E4BP4) is crucial for commitment of natural killer (NK) cells from common lymphoid progenitors (CLPs). However, the identity of the factor that can regulate NFIL3 directly during the NK-cell development is not known. Here, we reveal that pre-B-cell leukemia transcription factor 1 (PBX1) can upregulate the NFIL3 expression directly. We used conditional knockout mice in which PBX1 in hematopoietic cells was specifically absent. The number of NK-committed progenitor pre-NKP cells and rNKP cells was reduced significantly in the absence of PBX1, which was consistent with NFIL3 deficiency. Also, the NFIL3 expression in NK cells was decreased if PBX1 was absent. We demonstrated that PBX1 was bound directly to the promoter of Nfil3 and facilitated transcription. Upon knockout of the binding site of PBX1 in the Nfil3 promoter, mice showed fewer NK-precursor cells and NK cells, just like that observed in Nfil3 knockout mice. Furthermore, asparagine N286 in the homeodomain of PBX1 controlled the binding of PBX1 to the Nfil3 promoter. Collectively, these findings demonstrate that the transcription factor PBX1 promotes the early development of NK cells by upregulating the Nfil3 expression directly.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Linaje de la Célula , Regulación de la Expresión Génica , Células Asesinas Naturales/citología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Animales , Femenino , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genéticaRESUMEN
RATIONALE: Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE: We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS: Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS: Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Genes de Retinoblastoma/fisiología , Genes p16/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Animales , Línea Celular , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Células Madre Pluripotentes/trasplante , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Porcinos , Regulación hacia ArribaRESUMEN
BACKGROUND: Breast and gastric cancers are the most important diseases that lead to cancer death and social healthcare challenge. Overexpression of PBX1, a proto-oncogene, is correlated with the progression and metastasis of various cancers. For the first time, in this study the researchers evaluated the relationship between rs6426881, affecting miR-522-3p binding to the PBX1, with breast and gastric cancers. METHODS AND RESULTS: The Microarray analysis was performed for finding the relative expression level of PBX1 and hsa-miR-522-3p, based on high throughput experiments. The GSE54397, GSE112369, GSE10810, GSE241585.ER, GSE24185.PR, GSE68373, and GSE38167 datasets were analyzed. A case-control study was carried out in 123 Iranian suffering from breast cancer and 132 participants as control samples as well as 130 people suffering from gastric cancer and 54 people as control group members. SNP rs6426881 in the 3'-UTR of PBX1 was genotyped by the High-Resolution Melting (HRM) method. Association analysis revealed that rs6426881 is correlated with Estrogen and Progesterone receptors, grade, and stage of breast cancer. Furthermore, a significant relationship was observed between the genotypes and blood groups in gastric cancer, while the distribution of alleles was significantly related to smoking, status of the primary tumor, and metastasis (Chi-Square P < 0.05). Finally, Bioinformatics analyses suggested that rs6426881 contains binding sites for miR-522-3p in the 3'-UTR of PBX1 transcript. The finding suggested that TT genotype is associated with poor prognosis in breast and gastric cancer. CONCLUSIONS: The rs6426881 T allele at PBX1 3'-UT is significantly related to breast and gastric cancers by altering the regulatory affinity of miR-522-3p to PBX1 3'-UTR and may be suggested as a novel prognostic biomarker for the diseases.
Asunto(s)
Regiones no Traducidas 3' , Neoplasias de la Mama/genética , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Neoplasias Gástricas/genética , Sitios de Unión , Neoplasias de la Mama/metabolismo , Estudios de Casos y Controles , Humanos , Irán , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Neoplasias Gástricas/metabolismo , Población Blanca/genéticaRESUMEN
In the last decades, HOX proteins have been extensively studied due to their pivotal role in transcriptional events. HOX proteins execute their activity by exploiting a cooperative binding to PBX proteins and DNA. Therefore, an increase or decrease in HOX activity has been associated with both solid and haematological cancer diseases. Thus, inhibiting HOX-PBX interaction represents a potential strategy to prevent these malignancies, as demonstrated by the patented peptide HTL001 that is being studied in clinical trials. In this work, a computational study is described to identify novel potential peptides designed by employing a database of non-natural amino acids. For this purpose, residue scanning of the HOX minimal active sequence was performed to select the mutations to be further processed. According to these results, the peptides were point-mutated and used for Molecular Dynamics (MD) simulations in complex with PBX1 protein and DNA to evaluate complex binding stability. MM-GBSA calculations of the resulting MD trajectories were exploited to guide the selection of the most promising mutations that were exploited to generate twelve combinatorial peptides. Finally, the latter peptides in complex with PBX1 protein and DNA were exploited to run MD simulations and the ΔGbinding average values of the complexes were calculated. Thus, the analysis of the results highlighted eleven combinatorial peptides that will be considered for further assays.
Asunto(s)
Antineoplásicos/química , Simulación por Computador , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Péptidos/química , Factor de Transcripción 1 de la Leucemia de Células Pre-B/antagonistas & inhibidores , Humanos , Neoplasias/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/química , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismoRESUMEN
Chemoresistance is a leading obstacle in effective management of advanced prostate cancer (PCa). A better understanding of the molecular mechanisms involved in PCa chemoresistance could improve treatment of patients with PCa. In the present study, using immune histochemical, chemistry, and precipitation assays with cells from individuals with benign or malignant prostate cancer or established PCa cell lines, we found that the oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1) promotes PCa cell proliferation and confers to resistance against common anti-cancer drugs such as doxorubicin and cisplatin. We observed that genetic PBX1 knockdown abrogates this resistance, and further experiments revealed that PBX1 stability was modulated by the ubiquitin-proteasomal pathway. To directly probe the impact of this pathway on PBX1 activity, we screened for PBX1-specific deubiquitinases (Dubs) and found that ubiquitin-specific peptidase 9 X-linked (USP9x) interacted with and stabilized the PBX1 protein by attenuating its Lys-48-linked polyubiquitination. Moreover, the USP9x inhibitor WP1130 markedly induced PBX1 degradation and promoted PCa cell apoptosis. The results in this study indicate that PBX1 confers to PCa chemoresistance and identify USP9x as a Dub of PBX1. We concluded that targeting the USP9x/PBX1 axis could be a potential therapeutic strategy for managing advanced prostate cancer.
Asunto(s)
Apoptosis , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Neoplasias de la Próstata/patología , Ubiquitina Tiolesterasa/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismoRESUMEN
Epigenetic mechanisms are believed to play key roles in the establishment of cell-specific transcription programs. Accordingly, the modified bases 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been observed in DNA of genomic regulatory regions such as enhancers, and oxidation of 5mC into 5hmC by Ten-eleven translocation (TET) proteins correlates with enhancer activation. However, the functional relationship between cytosine modifications and the chromatin architecture of enhancers remains elusive. To gain insights into their function, 5mC and 5hmC levels were perturbed by inhibiting DNA methyltransferases and TETs during differentiation of mouse embryonal carcinoma cells into neural progenitors, and chromatin characteristics of enhancers bound by the pioneer transcription factors FOXA1, MEIS1, and PBX1 were interrogated. In a large fraction of the tested enhancers, inhibition of DNA methylation was associated with a significant increase in monomethylation of H3K4, a characteristic mark of enhancer priming. In addition, at some specific enhancers, 5mC oxidation by TETs facilitated chromatin opening, a process that may stabilize MEIS1 binding to these genomic regions.
Asunto(s)
5-Metilcitosina/metabolismo , Cromatina/metabolismo , Células Madre de Carcinoma Embrionario/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , 5-Metilcitosina/análogos & derivados , Animales , Diferenciación Celular , Cromatina/ultraestructura , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Células Madre de Carcinoma Embrionario/citología , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Células Tumorales CultivadasRESUMEN
Human sex-determination is a poorly understood genetic process, where gonad development depends on a cell fate decision that occurs in a somatic cell to commit to Sertoli (male) or granulosa (female) cells. A lack of testis-determination in the human results in 46,XY gonadal dysgenesis. A minority of these cases is explained by mutations in genes known to be involved in sex-determination. Here, we identified a de novo missense mutation, p.Arg235Gln in the highly conserved TALE homeodomain of the transcription factor Pre-B-Cell Leukemia Transcription Factor 1 (PBX1) in a child with 46,XY gonadal dysgenesis and radiocubital synostosis. This mutation, within the nuclear localization signal of the protein, modifies the ability of the PBX1 protein to localize to the nucleus. The mutation abolishes the physical interaction of PBX1 with two proteins known to be involved in testis-determination, CBX2 and EMX2. These results provide a mechanism whereby this mutation results specifically in the absence of testis-determination.
Asunto(s)
Disgenesia Gonadal 46 XY/genética , Mutación Missense , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Sinostosis/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Moleculares , Señales de Localización Nuclear , Complejo Represivo Polycomb 1/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/química , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Procesos de Determinación del Sexo , Factores de Transcripción/metabolismoRESUMEN
Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. Hence, Sp2 is strikingly different from its closely related paralogs Sp1 and Sp3, but how Sp2 recognizes its targets is unknown. Here, we sought to gain more detailed insights into the genomic targeting mechanism of Sp2. ChIP-exo sequencing in mouse embryonic fibroblasts revealed genomic binding of Sp2 to a composite motif where a recognition sequence for TALE homeoproteins and a recognition sequence for the trimeric histone-fold domain protein nuclear transcription factor Y (Nf-y) are separated by 11 bp. We identified a complex consisting of the TALE homeobox protein Prep1, its partner PBX homeobox 1 (Pbx1), and Nf-y as the major partners in Sp2-promoter interactions. We found that the Pbx1:Prep1 complex together with Nf-y recruits Sp2 to co-occupied regulatory elements. In turn, Sp2 potentiates binding of Pbx1:Prep1 and Nf-y. We also found that the Sp-box, a short sequence motif close to the Sp2 N terminus, is crucial for Sp2's cofactor function. Our findings reveal a mechanism by which the DNA binding-independent activity of Sp2 potentiates genomic loading of Pbx1:Prep1 and Nf-y to composite motifs present in many promoters of highly expressed genes.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Genómica , Proteínas de Homeodominio/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Factor de Transcripción Sp2/metabolismo , Animales , Factor de Unión a CCAAT/química , Línea Celular , Histonas/metabolismo , Ratones , Motivos de Nucleótidos , Unión Proteica , Transporte de Proteínas , Factor de Transcripción Sp2/química , Dedos de ZincRESUMEN
We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1-/-) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p.Arg184Pro, p.Met224Lys, and p.Arg227Pro) or within the homeodomain (p.Arg234Pro, and p.Arg235Gln), whereas p.Ser262Glnfs*2, and p.Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species.
Asunto(s)
Discapacidad Intelectual/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Preescolar , Femenino , Pleiotropía Genética/genética , Proteínas de Homeodominio/genética , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Embarazo , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genéticaRESUMEN
The balance between self-renewal and differentiation is crucial to ensure the homeostasis of the hematopoietic system, and is a hallmark of hematopoietic stem cells. However, the underlying molecular pathways, including the role of micro-RNA, are not completely understood. To assess the contribution of micro-RNA, we performed micro-RNA profiling of hematopoietic stem cells and their immediate downstream progeny multi-potent progenitors from wild-type control and Pbx1-conditional knockout mice, whose stem cells display a profound self-renewal defect. Unsupervised hierarchical cluster analysis separated stem cells from multi-potent progenitors, suggesting that micro-RNA might regulate the first transition step in the adult hematopoietic development. Notably, Pbx1-deficient and wild-type cells clustered separately, linking micro-RNAs to self-renewal impairment. Differential expression analysis of micro-RNA in the physiological stem cell-to-multi-potent progenitor transition and in Pbx1-deficient stem cells compared to control stem cells revealed miR-127-3p as the most differentially expressed. Furthermore, miR-127-3p was strongly stem cell-specific, being quickly down-regulated upon differentiation and not re-expressed further downstream in the bone marrow hematopoietic hierarchy. Inhibition of miR-127-3p function in Lineage-negative cells, achieved through a lentiviral-sponge vector, led to severe stem cell depletion, as assessed with serial transplantation assays. miR-127-3p-sponged stem cells displayed accelerated differentiation, which was uncoupled from proliferation, accounting for the observed stem cell reduction. miR-127-3p overexpression in Lineage-negative cells did not alter stem cell pool size, but gave rise to lymphopenia, likely due to lack of miR-127-3p physiological downregulation beyond the stem cell stage. Thus, tight regulation of miR-127-3p is crucial to preserve the self-renewing stem cell pool and homeostasis of the hematopoietic system.
Asunto(s)
Diferenciación Celular , Células Madre Hematopoyéticas/citología , MicroARNs/fisiología , Animales , Linaje de la Célula/genética , Análisis por Conglomerados , Cruzamientos Genéticos , Perfilación de la Expresión Génica , Hematopoyesis , Homeostasis , Humanos , Células K562 , Lentivirus/genética , Ratones , Ratones Noqueados , Estrés Oxidativo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismoAsunto(s)
Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteogenómica/métodos , Translocación GenéticaRESUMEN
PBX1 was abnormally overexpressed and its intracellular localization was found to be frequently amplified in many types of cancer, including renal clear cell carcinoma. PBX1 displays oncogenic activity in several different types of cells, but little is known about how signaling pathways are altered, and the function of PBX1 in renal clear cell carcinoma has not been well investigated. In this study, we demonstrate that the expression of PBX1 was significantly upregulated in 30 pairs of human tissues compared to adjacent normal tissues and the overall survival rate of PBX1-high group was significantly worse than that of PBX1-low group. Furthermore, JAK2 expression is significantly correlated to PBX1 expression in human clinical specimen and PBX1 knockdown inhibits STAT3 phosphorylation and reduced transcription of STAT3 target genes Cyclin D1. More interestingly, PBX1 knockdown inhibits ccRCC cell viability, proliferation and cell cycle progression in vivo and in vitro. Thus, our results demonstrate that PBX1 plays an oncogenic role in ccRCC via JAK2/STAT3 pathway and indicate its potential application for the treatment of human ccRCC in future.