RESUMEN
The earliest skeletal muscle progenitor cells (SMPCs) derived from human pluripotent stem cells (hPSCs) are often identified by factors expressed by a diverse number of progenitors. An early transcriptional checkpoint that defines myogenic commitment could improve hPSC differentiation to skeletal muscle. Analysis of several myogenic factors in human embryos and early hPSC differentiations found SIX1+PAX3+ co-expression was most indictive of myogenesis. Using dCas9-KRAB hPSCs, we demonstrate that early inhibition of SIX1 alone significantly decreased PAX3 expression, reduced PAX7+ SMPCs, and myotubes later in differentiation. Emergence of SIX1+PAX3+ precursors can be improved by manipulating seeding density, monitoring metabolic secretion and altering the concentration of CHIR99021. These modifications resulted in the co-emergence of hPSC-derived sclerotome, cardiac and neural crest that we hypothesized enhanced hPSC myogenic differentiation. Inhibition of non-myogenic lineages modulated PAX3 independent of SIX1. To better understand SIX1 expression, we compared directed differentiations to fetal progenitors and adult satellite cells by RNA-seq. Although SIX1 continued to be expressed across human development, SIX1 co-factor expression was dependent on developmental timing. We provide a resource to enable efficient derivation of skeletal muscle from hPSCs.
Asunto(s)
Células Madre Pluripotentes , Adulto , Humanos , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Proteínas de Homeodominio/metabolismoRESUMEN
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Asunto(s)
Factor de Transcripción PAX3 , Factor de Transcripción PAX7 , Urocordados , Animales , Urocordados/embriología , Urocordados/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Epitelio/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/embriología , Diferenciación Celular/genética , Cresta Neural/metabolismo , Cresta Neural/embriologíaRESUMEN
The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.
Asunto(s)
Proteínas de Fusión Oncogénica , Factores de Transcripción Paired Box , Rabdomiosarcoma Alveolar , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Fibroblastos , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma Alveolar/genéticaRESUMEN
Waardenburg syndrome type 1 (WS1) is a hereditary disease mainly characterized by sensorineural hearing loss, dystopia canthorum, and pigmentary defects. To elucidate molecular mechanisms underlying PAX3-associated hearing loss, we developed inner ear organoids model using induced pluripotent stem cells (iPSCs) derived from WS1 patient and healthy individual. Our results revealed a significant reduction in the size of inner ear organoids, accompanied by an increased level of apoptosis in organoids derived from WS1 patient-iPSCs carrying PAX3 c.214A > G. Transcriptome profiling analysis by RNA-seq indicated that inner ear organoids from WS1 patients were associated with suppression of inner ear development and WNT signaling pathway. Furthermore, the upregulation of the WNT1/ß-catenin pathway which was achieved through the correction of PAX3 isogenic mutant iPSCs using CRISPR/Cas9, contributed to an increased size of inner ear organoids and a reduction in apoptosis. Together, our results provide insight into the underlying mechanisms of hearing loss in WS.
Asunto(s)
Sordera , Oído Interno , Células Madre Pluripotentes Inducidas , Síndrome de Waardenburg , Humanos , Síndrome de Waardenburg/genética , Factor de Transcripción PAX3/genética , beta Catenina/genética , Mutación , Vía de Señalización Wnt , Organoides , Apoptosis , Proliferación CelularRESUMEN
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Asunto(s)
Músculo Esquelético , Proteína MioD , Proteína MioD/genética , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Diferenciación Celular/genética , Desarrollo de Músculos/genéticaRESUMEN
The purpose of this study was to explore the differential expression of Pax3, Rad51 and VEGF-C in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma and their relationship with cancer occurrence and development. 57 patients with gastric cancer were included and divided into esophageal gastric junction adenocarcinoma group (n=28) and distal gastric adenocarcinoma group (n=29). The positive expressions of Pax3, Rad51 and VEGF-C in the control group were lower than those in the esophageal gastric junction adenocarcinoma group and distal gastric adenocarcinoma group respectively (P<0.05). In esophageal gastric junction adenocarcinoma with low differentiation, positive expressions of Pax3, Rad51, and VEGF-C surpassed those in high/medium differentiation (P<0.05). Serosa-infiltrated cases exhibited higher Pax3 and Rad51 expressions compared to non-infiltrated cases (P<0.05). Rad51 and VEGF-C positivity were notably elevated in cases with lymph node metastasis compared to those without (P<0.05). Distal gastric adenocarcinoma displayed higher VEGF expression than middle/low differentiated adenocarcinomas. Rad51 expression was significantly higher in women than in men (P<0.05). The positive rates of Pax3, Rad51, and VEGF-C were markedly increased in esophageal gastric junction adenocarcinoma and distal gastric adenocarcinoma compared to normal gastric tissue, and these were associated with the degree of differentiation, depth of invasion, and lymph node metastasis in patients. Particularly, Rad51 exhibited a positive correlation with cancer cell differentiation, invasion depth, and lymph node metastasis in cancer tissue.
Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Factor de Transcripción PAX3 , Recombinasa Rad51 , Neoplasias Gástricas , Factor C de Crecimiento Endotelial Vascular , Femenino , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Metástasis Linfática , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factores de Transcripción , Factor C de Crecimiento Endotelial Vascular/genética , Factor de Transcripción PAX3/genética , Recombinasa Rad51/genéticaRESUMEN
Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.
Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma/genética , Genómica , Animales , ADN Intergénico/genética , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Intrones/genética , Masculino , Ratones , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Picea/genética , Pinus/genética , Regeneración/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genéticaRESUMEN
During the last 60 years many inherited traits in domestic outbred cats were selected and retained giving birth to new breeds characterised by singular coat or morphological phenotypes. Among them, minimal white spotting associated with blue eyes was selected by feline breeders to create the Altai, Topaz, and Celestial breeds. Various established breeds also introduced this trait in their lineages. The trait, that was confirmed as autosomal dominant by breeding data, was first described in domestic cats from Kazakhstan and Russia, in British shorthair and British longhair from Russia, and in Maine Coon cats from the Netherlands, suggesting different founding effects. Using a genome-wide association study we identified a single region on chromosome C1 that was associated with the minimal white spotting and blue eyes phenotype (also called DBE by breeders for dominant blue eyes) in the French Celestial breed. Within that region we identified Paired Box 3 (PAX3) as the strongest candidate gene, since PAX3 is a key regulator of MITF (Melanocyte-Inducing Transcription Factor) and PAX3 variants have been previously identified in various species showing white spotting with or without blue eyes including the mouse and the horse. Whole genome sequencing of a Celestial cat revealed an endogenous retrovirus LTR (long terminal repeat) insertion within PAX3 intron 4 known to contain regulatory sequences (conserved non-coding element [CNE]) involved in PAX3 expression. The insertion is in the vicinity of CNE2 and CNE3. All 52 Celestial and Celestial-mixed cats with a DBE phenotype presented the insertion, that was absent in their 22 non-DBE littermates and in 87 non-DBE cats from various breeds. The outbred Celestial founder was also heterozygous for the insertion. Additionally, the variant was found in nine DBE Maine Coon cats related to the Celestial founder and four DBE Siberian cats with an uncertain origin. Segregation of the variant in the Celestial breed is consistent with dominant inheritance and does not appear to be associated with deafness. We propose that this NC_018730.3:g.206974029_206974030insN[395] variant represents the DBECEL (Celestial Dominant Blue Eyes) allele in the domestic cat.
Asunto(s)
Cruzamiento , Color del Ojo , Factor de Transcripción PAX3 , Animales , Gatos/genética , Factor de Transcripción PAX3/genética , Color del Ojo/genética , Fenotipo , Estudio de Asociación del Genoma Completo/veterinaria , Genes DominantesRESUMEN
During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.
Asunto(s)
Proliferación Celular , Factor 2 de Crecimiento de Fibroblastos , Desarrollo de Músculos , Proteína MioD , Mioblastos , Desarrollo de Músculos/genética , Animales , Ratones , Proteína MioD/metabolismo , Proteína MioD/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/genética , Mioblastos/metabolismo , Mioblastos/citología , Línea Celular , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX3/genética , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Diferenciación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologíaRESUMEN
Both Warrensburg (WS) and Marfan syndrome (MFS) can impair the vision. Here, we recruited a Chinese family consisting of two WS affected individuals (II:1 and III:3) and five MFS affected individuals( I:1, II:2, III:1, III:2, and III:5) as well as one suspected MFS individual (II:4). Using whole exome sequencing (WES) and subsequent PCR-Sanger sequencing, we identified one novel heterozygous variant NM_000438 (PAX3) c.208 T > C, (p.Cys70Arg) from individuals with WS and one previous reported variant NM_000138 (FBN1) c.2740 T > A, (p.Cys914Ser) from individuals with MFS and co-segregated with the diseases. Real-time PCR and Western blot assay showed that, compared to their wild-type, both mRNAs and proteins of PAX3 and FBN1 mutants reduced in HKE293T cells. Together, our study identified two disease-causing variants in a same Chinese family with WS and MFS, and confirmed their damaged effects on their genes' expression. Therefore, those findings expand the mutation spectrum of PAX3 and provide a new perspective for the potential therapy.
Asunto(s)
Síndrome de Marfan , Humanos , Síndrome de Marfan/genética , Secuenciación del Exoma , Pueblos del Este de Asia , Mutación , Heterocigoto , Linaje , Factor de Transcripción PAX3/genética , Fibrilina-1/genéticaRESUMEN
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Asunto(s)
Diferenciación Celular , Neuroblastoma , Factor de Transcripción PAX3 , Humanos , Línea Celular Tumoral , Neuroblastoma/genética , Neuroblastoma/metabolismo , Factor de Transcripción PAX3/genética , Isoformas de Proteínas/genética , Tretinoina/farmacologíaRESUMEN
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Asunto(s)
Desarrollo de Músculos/fisiología , Regeneración/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Macrófagos/fisiología , Modelos Biológicos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Regeneración/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.
Asunto(s)
Transdiferenciación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma Alveolar/genética , Animales , Biopsia , Embrión de Pollo , Niño , Ciclina D1/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Invasividad Neoplásica/genética , Células-Madre Neurales/patología , Tubo Neural/citología , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma Alveolar/patología , Fase S/genéticaRESUMEN
BACKGROUND: Migrating muscle progenitors delaminate from the somite and subsequently form muscle tissue in distant anatomical regions such as the paired appendages, or limbs. In amniotes, this process requires a signaling cascade including the transcription factor paired box 3 (Pax3). RESULTS: In this study, we found that, unlike in mammals, pax3a/3b double mutant zebrafish develop near to normal appendicular muscle. By analyzing numerous mutant combinations of pax3a, pax3b and pax7a, and pax7b, we determined that there is a feedback system and a compensatory mechanism between Pax3 and Pax7 in this developmental process, even though Pax7 alone is not required for appendicular myogenesis. pax3a/3b/7a/7b quadruple mutant developed muscle-less pectoral fins. CONCLUSIONS: We found that Pax3 and Pax7 are redundantly required during appendicular myogenesis in zebrafish, where Pax7 is able to activate the same developmental programs as Pax3 in the premigratory progenitor cells.
Asunto(s)
Factores de Transcripción Paired Box , Pez Cebra , Animales , Mamíferos , Desarrollo de Músculos/genética , Músculo Esquelético , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Pez Cebra/genéticaRESUMEN
Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.
Asunto(s)
Cresta Neural/inervación , Factor de Transcripción PAX3/genética , Vejiga Urinaria/inervación , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Ganglios , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Sistema Nervioso/embriología , Cresta Neural/fisiología , Defectos del Tubo Neural/genética , Neurogénesis , Factor de Transcripción PAX3/fisiología , Factores de Transcripción Paired Box/genética , Factores de Transcripción SOXE , Región Sacrococcígea/inervación , Disrafia Espinal/complicaciones , Disrafia Espinal/genética , Vejiga Urinaria/embriologíaRESUMEN
MicroRNAs (miRNAs), short non-coding RNAs, which act post-transcriptionally to regulate gene expression, are of widespread significance during development and disease, including muscle disease. Advances in sequencing technology and bioinformatics led to the identification of a large number of miRNAs in vertebrates and other species, however, for many of these miRNAs specific roles have not yet been determined. LNA in situ hybridisation has revealed expression patterns of somite-enriched miRNAs, here we focus on characterising the functions of miR-128. We show that antagomiR-mediated knockdown (KD) of miR-128 in developing chick somites has a negative impact on skeletal myogenesis. Computational analysis identified the transcription factor EYA4 as a candidate target consistent with the observation that miR-128 and EYA4 display similar expression profiles. Luciferase assays confirmed that miR-128 interacts with the EYA4 3'UTR. In vivo experiments also suggest that EYA4 is regulated by miR-128. EYA4 is a member of the PAX-SIX-EYA-DACH (PSED) network of transcription factors. Therefore, we identified additional candidate miRNA binding sites in the 3'UTR of SIX1/4, EYA1/2/3 and DACH1. Using the miRanda algorithm, we found sites for miR-128, as well as for other myogenic miRNAs, miR-1a, miR-206 and miR-133a, some of these were experimentally confirmed as functional miRNA target sites. Our results reveal that miR-128 is involved in regulating skeletal myogenesis by directly targeting EYA4 with indirect effects on other PSED members, including SIX4 and PAX3. Hence, the inhibitory effect on myogenesis observed after miR-128 knockdown was rescued by concomitant knockdown of PAX3. Moreover, we show that the PSED network of transcription factors is co-regulated by multiple muscle-enriched microRNAs.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Factores de Transcripción/genética , Regiones no Traducidas 3' , Animales , Embrión de Pollo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Músculo Esquelético/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Somitos/embriología , Somitos/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Asunto(s)
Sordera , Síndrome de Waardenburg , Animales , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Factor de Transcripción PAX3/genética , Fenotipo , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg/diagnóstico , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/terapiaRESUMEN
Waardenburg syndrome (WS) is a phenotypically and genetically heterogeneous disorder characterised by hearing loss and pigmentary abnormalities. We clarified the clinical and genetic features in 90 Chinese WS probands. Disease-causing variants were detected in 55 probands, for a molecular diagnosis rate of 61%, including cases related to PAX3 (14.4%), MITF (24.4%), and SOX10 (22.2%). Altogether, 48 variants were identified, including 44 single-nucleotide variants and 4 copy number variants. By parental genotyping, de novo variants were observed in 60% of probands and 15.4% of the de novo variation was associated with mosaicism. Statistical analyses revealed that brown freckles on the skin were more frequently seen in probands with MITF variants; patchy depigmented skin, asymmetric hearing loss, and white forelocks occurred more often in cases with PAX3 variants; and congenital inner ear malformations were more common and cochlear hypoplasia III was exclusively observed in those with SOX10 variants. In addition, we found that ranges of W-index values overlapped between WS probands with different genetic variants, and the use of the W-index as a tool for assessing dystopia canthorum may be problematic in Chinese. Herein, we report the spectrum of a cohort of WS probands and elucidate the relationship between genotype and phenotype.
Asunto(s)
Síndrome de Waardenburg , China , Genotipo , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Mosaicismo , Mutación , Factor de Transcripción PAX3/genética , Linaje , Fenotipo , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg/genéticaRESUMEN
PAX3/7-FOXO1 fusion-negative alveolar rhabdomyosarcoma (ARMS) developed in a patient presenting with intellectual disability and dysmorphic facial features. Whole exome sequencing analysis of a germline sample identified a PACS1 c.607 C>T de novo variant and the patient was diagnosed with Schuurs-Hoeijmakers syndrome (SHS). SHS is a rare disease characterized by intellectual disability and dysmorphic facial features, among various physical abnormalities, due to PACS1 c.607 C>T de novo variant. Due to the rarity of the SHS, diagnosis based on phenotypic information is difficult. To date, there have been no previous reports describing malignancy associated with SHS. Comprehensive somatic mutation analysis revealed a unique pattern of genetic alterations in the PAX3/7-FOXO1 fusion-negative ARMS tumor, including mutations in the oncogene, HRAS; MYOD1, a molecule essential for muscle differentiation; and KMT2C and TET1, genes encoding factors involved in epigenetic regulation. Although the role of PACS1 in tumorigenesis is unclear, it is reported to function in apoptosis regulation. Our case suggests that PACS1 could have a novel role in oncogenesis.
Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Rabdomiosarcoma Alveolar/diagnóstico , Rabdomiosarcoma Alveolar/etiología , Alelos , Proteína Forkhead Box O1/genética , Estudios de Asociación Genética , Genotipo , Humanos , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Fenotipo , SíndromeRESUMEN
Waardenburg syndrome is a group of genetic conditions that can cause hearing loss and pigmentation deficiency of the hair, skin, and eyes. Klein-Waardenburg syndrome (Waardenburg syndrome type 3) represents a distinct presentation of Waardenburg syndrome type 1 and includes musculoskeletal abnormalities in addition to dystopia canthorum hearing loss and pigmentary changes. Heterozygous or homozygous variants in the PAX3 gene cause Klein-Waardenburg syndrome. Here we report on a new severely affected child, with a homozygous PAX3 variant (c.251C>T; p.Ser84Phe), review the features of the syndrome, and propose a new classification. The designation of Waardenburg syndrome should be given only to patients with monoallelic pathogenic variants in PAX3 whether or not musculoskeletal abnormalities are present. Patients with biallelic PAX3 variants should be outlined as a distinct group and designated Klein syndrome.