RESUMEN
In this issue, Li et al. (2015) uncover roles for the XPB and XPD helicases and for XPA during damage verification in nucleotide excision repair, supporting a novel tripartite damage checking mechanism that combines extreme versatility with narrow specificity.
Asunto(s)
Aductos de ADN/genética , Proteínas de Unión al ADN/fisiología , Factor de Transcripción TFIIH/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/fisiología , Animales , HumanosRESUMEN
Transcription factor IIH (TFIIH) is essential for both transcription and nucleotide excision repair (NER). DNA lesions are initially detected by NER factors XPC and XPE or stalled RNA polymerases, but only bulky lesions are preferentially repaired by NER. To elucidate substrate specificity in NER, we have prepared homogeneous human ten-subunit TFIIH and its seven-subunit core (Core7) without the CAK module and show that bulky lesions in DNA inhibit the ATPase and helicase activities of both XPB and XPD in Core7 to promote NER, whereas non-genuine NER substrates have no such effect. Moreover, the NER factor XPA activates unwinding of normal DNA by Core7, but inhibits the Core7 helicase activity in the presence of bulky lesions. Finally, the CAK module inhibits DNA binding by TFIIH and thereby enhances XPC-dependent specific recruitment of TFIIH. Our results support a tripartite lesion verification mechanism involving XPC, TFIIH, and XPA for efficient NER.
Asunto(s)
Aductos de ADN/genética , Proteínas de Unión al ADN/fisiología , Factor de Transcripción TFIIH/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/fisiología , Animales , Cisplatino/química , Aductos de ADN/química , Reparación del ADN , ADN de Cadena Simple/fisiología , Proteínas de Unión al ADN/química , Ensayo de Cambio de Movilidad Electroforética , Humanos , Unión Proteica , Células Sf9 , Spodoptera , Factor de Transcripción TFIIH/química , Proteína de la Xerodermia Pigmentosa del Grupo A/químicaRESUMEN
Cullin proteins are scaffolds for the assembly of multisubunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING domain of Hrt1 nor required the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 and the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING domain protein Tfb3 controls activation of a subset of cullins.
Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/fisiología , Factores de Transcripción TFII/fisiología , Ubiquitinas/metabolismo , Mutación , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in distinct clinical entities, including the cancer-prone xeroderma pigmentosum (XP) and the multisystem disorder trichothiodystrophy (TTD), which share only cutaneous photosensitivity. Gene-expression profiles of primary dermal fibroblasts revealed overexpression of matrix metalloproteinase 1 (MMP-1), the gene encoding the metalloproteinase that degrades the interstitial collagens of the extracellular matrix (ECM), in TTD patients mutated in XPD compared with their healthy parents. The defect is observed in TTD and not in XP and is specific for fibroblasts, which are the main producers of dermal ECM. MMP-1 transcriptional up-regulation in TTD is caused by an erroneous signaling mediated by retinoic acid receptors on the MMP-1 promoter and leads to hypersecretion of active MMP-1 enzyme and degradation of collagen type I in the ECM of cell/tissue systems and TTD patient skin. In agreement with the well-known role of ECM in eliciting signaling events controlling cell behavior and tissue homeostasis, ECM alterations in TTD were shown to impact on the migration and wound-healing properties of patient dermal fibroblasts. The presence of a specific inhibitor of MMP activity was sufficient to restore normal cell migration, thus providing a potential approach for therapeutic strategies. This study highlights the relevance of ECM anomalies in TTD pathogenesis and in the phenotypic differences between TTD and XP.
Asunto(s)
Matriz Extracelular/patología , Metaloproteinasa 1 de la Matriz/metabolismo , Factor de Transcripción TFIIH/fisiología , Síndromes de Tricotiodistrofia/enzimología , Humanos , Metaloproteinasa 1 de la Matriz/genética , Regiones Promotoras Genéticas , Receptores de Ácido Retinoico/metabolismo , Síndromes de Tricotiodistrofia/patología , Cicatrización de HeridasRESUMEN
Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.
Asunto(s)
ARN Polimerasa II/fisiología , Saccharomyces cerevisiae/enzimología , Sitio de Iniciación de la Transcripción , Secuencia de Bases , ADN Helicasas/química , ADN Helicasas/fisiología , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Polimerasa II/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/fisiología , Transcripción GenéticaRESUMEN
The xeroderma pigmentosum group D (XPD) helicase is a subunit of transcription/DNA repair factor, transcription factor II H (TFIIH) that catalyzes the unwinding of a damaged DNA duplex during nucleotide excision repair. Apart from two canonical helicase domains, XPD is composed of a 4Fe-S cluster domain involved in DNA damage recognition and a module of uncharacterized function termed the "ARCH domain." By investigating the consequences of a mutation found in a patient with trichothiodystrophy, we show that the ARCH domain is critical for the recruitment of the cyclin-dependent kinase (CDK)-activating kinase (CAK) complex. Indeed, this mutation not only affects the interaction with the MAT1 CAK subunit, thereby decreasing the in vitro basal transcription activity of TFIIH itself and impeding the efficient recruitment of the transcription machinery on the promoter of an activated gene, but also impairs the DNA unwinding activity of XPD and the nucleotide excision repair activity of TFIIH. We further demonstrate the role of CAK in downregulating the XPD helicase activity within TFIIH. Taken together, our results identify the ARCH domain of XPD as a platform for the recruitment of CAK and as a potential molecular switch that might control TFIIH composition and play a key role in the conversion of TFIIH from a factor active in transcription to a factor involved in DNA repair.
Asunto(s)
Reparación del ADN , Mutación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción TFIIH/fisiología , Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Línea Celular , Inmunoprecipitación de Cromatina , Receptor con Dominio Discoidina 1 , Humanos , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndromes de Tricotiodistrofia/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismoRESUMEN
Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH yield the rare genetic disorder trichothiodystrophy (TTD). Although this syndrome was initially associated with a DNA repair defect, individuals with TTD develop neurological features, such as microcephaly and hypomyelination that could be connected to transcriptional defects. Here we show that an XPD mutation in TTD mice results in a spatial and selective deregulation of thyroid hormone target genes in the brain. Molecular analyses performed on the mice brain tissue demonstrate that TFIIH is required for the stabilization of thyroid hormone receptors (TR) to their DNA-responsive elements. The limiting amounts of TFIIH found in individuals with TTD thus contribute to the deregulation of TR-responsive genes. The discovery of an unexpected stabilizing function for TFIIH deepens our understanding of the pathogenesis and neurological manifestations observed in TTD individuals.
Asunto(s)
Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Factor de Transcripción TFIIH/fisiología , Síndromes de Tricotiodistrofia/complicaciones , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Línea Celular Transformada , Huella de ADN/métodos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , ARN Interferente Pequeño/farmacología , Factor de Transcripción TFIIH/deficiencia , Transfección , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologíaRESUMEN
(1) Background: Growth differentiation factor-15 (GDF-15) is associated with cardiovascular diseases and autophagy in human macrophages (MΦ). Thus, we are interested in investigating autophagic mechanisms with special respect to the role of GDF-15. (2) Methods: Recombinant (r)GDF-15 and siRNA GDF-15 were used to investigate the effects of GDF-15 on autophagic and lysosomal activity, as well as autophagosome formation by transmission electron microscopy (TEM) in MΦ. To ascertain the effects of GDF-15-/- on the progression of atherosclerotic lesions, we used GDF-15-/-/ApoE-/- and ApoE-/- mice under a cholesterol-enriched diet (CED). Body weight, body mass index (BMI), blood lipid levels and lumen stenosis in the brachiocephalic trunk (BT) were analyzed. Identification of different cell types and localization of autophagy-relevant proteins in atherosclerotic plaques were performed by immunofluorescence. (3) Results: siGDF-15 reduced and, conversely, rGDF-15 increased the autophagic activity in MΦ, whereas lysosomal activity was unaffected. Autophagic degradation after starvation and rGDF-15 treatment was observed by TEM. GDF-15-/-/ApoE-/- mice, after CED, showed reduced lumen stenosis in the BT, while body weight, BMI and triglycerides were increased compared with ApoE-/- mice. GDF-15-/- decreased p62-accumulation in atherosclerotic lesions, especially in endothelial cells (ECs). (4) Conclusion: GDF-15 seems to be an important factor in the regulation of autophagy, especially in ECs of atherosclerotic lesions, indicating its crucial pathophysiological function during atherosclerosis development.
Asunto(s)
Factor 15 de Diferenciación de Crecimiento/deficiencia , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor de Transcripción TFIIH/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/farmacología , Apoptosis/fisiología , Aterosclerosis/metabolismo , Autofagia/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Células THP-1 , Factor de Transcripción TFIIH/fisiología , Triglicéridos/metabolismoRESUMEN
Transcription factor IIH (TFIIH) is eukaryotic multi protein complex identified in early 90's. Subsequent years have shown exceptional conservation of its structure from yeast to human. Although initially considered to be exclusively a basal transcription factor responsible for initiation of transcription and transition from initiation to elongation, TFIIH is also important in nucleotide excision repair for opening DNA at the site of a lesion and for recruitment of additional repair factors. Recently it was suggested that intact holocomplex of TFIIH is required for cell cycle regulation. Moreover, mutations in TFIIH subunits lead to three distinct genetic disorders: xeroderma pigmentosum (DNA repair disorder/cancer syndrome), Cockayne syndrome (DNA repair disorder/transcription syndrome/segmental progeria) and trichothiodystrophy (DNA repair disorder/transcription syndrome). This review is focused on the TFIIH structure, its role in transcription, DNA repair and cell cycle regulation and association with some human hereditary disorders.
Asunto(s)
Reparación del ADN , Factor de Transcripción TFIIH/fisiología , Transcripción Genética , Animales , Enfermedades Genéticas Congénitas/metabolismo , HumanosRESUMEN
TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.
Asunto(s)
Reparación del ADN , Factor de Transcripción TFIIH/fisiología , Transcripción Genética , Receptor con Dominio Discoidina 1 , Inestabilidad Genómica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción TFIIH/metabolismoRESUMEN
TFIIH is indispensable for nucleotide excision repair (NER) and RNA polymerase II transcription. Its tenth subunit was recently discovered in yeast as Tfb5. Unlike other TFIIH subunits, Tfb5 is not essential for cell survival. We have analyzed the role of Tfb5 in NER. NER was deficient in the tfb5 deletion mutant cell extracts, and was specifically complemented by purified Tfb5 protein. In contrast to the extreme ultraviolet (UV) sensitivity of rad14 mutant cells that lack any NER activity, tfb5 deletion mutant cells were moderately sensitive to UV radiation, resembling that of the tfb1-101 mutant cells in which TFIIH activity is compromised but not eliminated. Thus, Tfb5 protein directly participates in NER and is an accessory NER protein that stimulates the repair to the proficient level. Lacking a DNA binding activity, Tfb5 was found to interact with the core TFIIH subunit Tfb2, but not with other NER proteins. The Tfb5-Tfb2 interaction was correlated with the cellular NER function of Tfb5, supporting the functional importance of this interaction. Our results led to a model in which Tfb5 acts as an architectural stabilizer conferring structural rigidity to the core TFIIH such that the complex is maintained in its functional architecture.
Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIH/metabolismo , Secuencia de Aminoácidos , ADN/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/fisiología , Técnicas del Sistema de Dos Híbridos , Rayos UltravioletaRESUMEN
Transcription factor IIH (TFIIH) is a heterodecameric protein complex critical for transcription initiation by RNA polymerase II and nucleotide excision DNA repair. The TFIIH core complex is sufficient for its repair functions and harbors the XPB and XPD DNA-dependent ATPase/helicase subunits, which are affected by human disease mutations. Transcription initiation additionally requires the CdK activating kinase subcomplex. Previous structural work has provided only partial insight into the architecture of TFIIH and its interactions within transcription pre-initiation complexes. Here, we present the complete structure of the human TFIIH core complex, determined by phase-plate cryo-electron microscopy at 3.7 Å resolution. The structure uncovers the molecular basis of TFIIH assembly, revealing how the recruitment of XPB by p52 depends on a pseudo-symmetric dimer of homologous domains in these two proteins. The structure also suggests a function for p62 in the regulation of XPD, and allows the mapping of previously unresolved human disease mutations.
Asunto(s)
ADN Helicasas/química , Proteínas de Unión al ADN/química , Subunidad p52 de NF-kappa B/química , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/fisiología , Proteínas de Ciclo Celular/química , Microscopía por Crioelectrón , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Células HeLa , Humanos , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas de Unión al ARN/química , Factor de Transcripción TFIIH/genética , Factores de Transcripción/química , Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo D/químicaRESUMEN
Transcriptional factor IIH (TFIIH) is involved in cell cycle regulation, nucleotide excision repair, and gene transcription. Mutations in three of its subunits, XPB, XPD, and TTDA, lead to human recessive genetic disorders such as trichothiodystrophy and xeroderma pigmentosum, the latter of which is sometimes associated with Cockayne's syndrome. In the present study, we investigate the sequence conservation of TFIIH subunits among several teleost fish species and compare their characteristics and putative regulation by transcription factors to those of human and zebrafish. We report the following findings: (i) comparisons among protein sequences revealed a high sequence identity for each TFIIH subunit analysed; (ii) among transcription factors identified as putative regulators, OCT1 and AP1 have the highest binding-site frequencies in the promoters of TFIIH genes, and (iii) TFIIH genes have alternatively spliced isoforms. Finally, we compared the protein primary structure in human and zebrafish of XPD and XPB - two important ATP-dependent helicases that catalyse the unwinding of the DNA duplex at promoters during transcription - highlighting the conservation of domain regions such as the helicase domains. Our study suggests that zebrafish, a widely used model for many human diseases, could also act as an important model to study the function of TFIIH complex in repair and transcription regulation in humans.
Asunto(s)
Evolución Molecular , Factor de Transcripción TFIIH/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Mapeo Cromosómico , Secuencia Conservada , Peces/genética , Humanos , Datos de Secuencia Molecular , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción TFIIH/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaAsunto(s)
Factor de Transcripción TFIIH/fisiología , Factores de Transcripción TFII/química , Factores de Transcripción TFII/fisiología , Sitios de Unión , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismoAsunto(s)
Síndrome de Cockayne/genética , Reparación del ADN/genética , Transcripción Genética/genética , ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Endonucleasas/genética , Endonucleasas/fisiología , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas de Unión a Poli-ADP-Ribosa , Factor de Transcripción TFIIH/deficiencia , Factor de Transcripción TFIIH/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiologíaAsunto(s)
Nucléolo Celular/química , Nucléolo Celular/fisiología , Animales , ADN Polimerasa I/fisiología , Humanos , ARN Polimerasa I/metabolismo , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Nucleolar Pequeño , Proteínas de Unión al ARN , Factor de Transcripción TFIIH/fisiología , Transcripción GenéticaRESUMEN
To identify novel factors involved in nuclear mRNA export in Schizosaccharomyces pombe, we isolated and characterized the ptr8(+) gene, mutation of which causes nuclear accumulation of poly (A)(+) RNA. The ptr8(+) gene encodes an S. pombe homologue of human XPB, a component of TFIIH involved in nucleotide excision repair (NER) and transcription. A temperature-sensitive mutant of ptr8(+) (ptr8-1) was highly sensitive to UV irradiation, as are human XPB cells. Northern blot analysis demonstrated that the amount of total poly (A)(+) mRNAs does not decrease significantly at the nonpermissive temperature in ptr8-1 cells, whereas a pulse-labeling assay using (35)S-methionine showed that protein synthesis decreases rapidly after incubation of cells at the nonpermissive temperature, suggesting that ptr8-1 cells have a defect in nuclear mRNA export. In Saccharomyces cerevisiae, a mutation in the SSL2 gene encoding a homologue of Ptr8p also causes a block of mRNA export at the nonpermissive temperature. In addition, expression of human XPB in ptr8-1 cells rescued the ts phenotype and the mRNA export defects, suggesting that human XPB may also play a role in mRNA export. Furthermore, we revealed a functional interaction between Ptr8p and Tho2p, a component of the TREX complex involved in mRNA export. These results suggest that XPB/Ptr8p plays roles not only in NER and transcription, but also plays a conserved role in mRNA export.
Asunto(s)
Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Factor de Transcripción TFIIH/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Síndrome de Cockayne/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Humanos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Mutación , Poli A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Temperatura , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/fisiologíaRESUMEN
To better understand the critical conversions that RNA polymerase II complexes undergo during promoter escape, we determined in vitro the precise positions of the rate-limiting step and the last step requiring negative superhelicity or TFIIE and TFIIH. We found that both steps occur after synthesis of an 8 nt RNA during the stage encompassing translocation of the polymerase active site to the ninth register. When added to reactions just before this step, TFIIE and TFIIH overcame the requirement for negative superhelicity. The positions at which both steps occur were strictly dependent on RNA length as opposed to the location of the polymerase relative to promoter elements, showing that the transcript itself controls transformations during promoter escape. We propose a model in which completion of promoter escape involves a rate-limiting conversion of early transcribing complexes into elongation complexes. This transformation is triggered by synthesis of an 8 nt RNA, occurs independent of the general transcription factors, and requires under-winding in the DNA template via negative superhelicity or the action of TFIIE and TFIIH.