Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.406
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(5): 1160-1176.e24, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730855

RESUMEN

Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Mucosa Intestinal/patología , Antígenos CD/metabolismo , Apirasa/metabolismo , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Muerte Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Niño , Estudios de Cohortes , Colon/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Dipiridamol/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Inmunoglobulina G/sangre , Memoria Inmunológica , Inflamación/patología , Enfermedades Inflamatorias del Intestino/sangre , Enfermedades Inflamatorias del Intestino/genética , Interferón Tipo I/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metilprednisolona/farmacología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo
2.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102106

RESUMEN

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos
3.
Mol Cell ; 81(5): 1084-1099.e6, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450211

RESUMEN

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Células HeLa , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Inhibidores de Topoisomerasa I/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Quinasa Tipo Polo 1
4.
Nat Immunol ; 16(3): 246-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25642822

RESUMEN

Immune responses need to be tightly controlled to avoid excessive inflammation and prevent unwanted host damage. Here we report that germinal center kinase MST4 responded dynamically to bacterial infection and acted as a negative regulator of inflammation. We found that MST4 directly interacted with and phosphorylated the adaptor TRAF6 to prevent its oligomerization and autoubiquitination. Accordingly, MST4 did not inhibit lipopolysaccharide-induced cytokine production in Traf6(-/-) embryonic fibroblasts transfected to express a mutant form of TRAF6 that cannot be phosphorylated at positions 463 and 486 (with substitution of alanine for threonine at those positions). Upon developing septic shock, mice in which MST4 was knocked down showed exacerbated inflammation and reduced survival, whereas heterozygous deletion of Traf6 (Traf6(+/-)) alleviated such deleterious effects. Our findings reveal a mechanism by which TRAF6 is regulated and highlight a role for MST4 in limiting inflammatory responses.


Asunto(s)
Inflamación/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Masculino , Ratones , Persona de Mediana Edad , Sepsis/sangre , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo
5.
Mol Cell ; 76(4): 562-573.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31543423

RESUMEN

Cells escape the need for mitogens at a restriction point several hours before entering S phase. The restriction point has been proposed to result from CDK4/6 initiating partial Rb phosphorylation to trigger a bistable switch whereby cyclin E-CDK2 and Rb mutually reinforce each other to induce Rb hyperphosphorylation. Here, using single-cell analysis, we unexpectedly found that cyclin E/A-CDK activity can only maintain Rb hyperphosphorylation starting at the onset of S phase and that CDK4/6 activity, but not cyclin E/A-CDK activity, is required to hyperphosphorylate Rb throughout G1 phase. Mitogen removal in G1 results in a gradual loss of CDK4/6 activity with a high likelihood of cells sustaining Rb hyperphosphorylation until S phase, at which point cyclin E/A-CDK activity takes over. Thus, it is short-term memory, or transient hysteresis, in CDK4/6 activity following mitogen removal that sustains Rb hyperphosphorylation, demonstrating a probabilistic rather than an irreversible molecular mechanism underlying the restriction point.


Asunto(s)
Proliferación Celular , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Epiteliales/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular , Mitógenos/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Células Epiteliales/enzimología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Ratones , Modelos Biológicos , Fosforilación , Proteínas de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Mol Cell ; 76(3): 485-499.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495563

RESUMEN

Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fibroblastos/efectos de los fármacos , Interferón gamma/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Quinasa 8 Dependiente de Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Fibroblastos/enzimología , Fibroblastos/virología , Células HCT116 , Interacciones Huésped-Patógeno , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , ARN Polimerasa II/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Vesiculovirus/patogenicidad
7.
Mol Cell ; 73(6): 1138-1149.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901564

RESUMEN

The nuclear factor (NF)-κB pathway plays a central role in inflammatory and immune responses, with aberrant activation of NF-κB signaling being implicated in various human disorders. Here, we show that mammalian ste20-like kinase 1 (MST1) is a previously unrecognized component of the tumor necrosis factor α (TNFα) receptor 1 signaling complex (TNF-RSC) and attenuates TNFα-induced NF-κB signaling. Genetic ablation of MST1 in mouse embryonic fibroblasts and bone marrow-derived macrophages potentiated the TNFα-induced increase in IκB kinase (IKK) activity, as well as the expression of NF-κB target genes. TNFα induced the recruitment of MST1 to TNF-RSC and its interaction with HOIP, the catalytic component of the E3 ligase linear ubiquitin assembly complex (LUBAC). Furthermore, MST1 activated in response to TNFα stimulation mediates the phosphorylation of HOIP and thereby inhibited LUBAC-dependent linear ubiquitination of NEMO/IKKγ. Together, our findings suggest that MST1 negatively regulates TNFα-induced NF-κB signaling by targeting LUBAC.


Asunto(s)
Fibroblastos/efectos de los fármacos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Fibroblastos/enzimología , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multienzimáticos , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
Mol Cell ; 73(2): 354-363.e3, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30581146

RESUMEN

Ferroptosis is a regulated necrosis process driven by iron-dependent lipid peroxidation. Although ferroptosis and cellular metabolism interplay with one another, whether mitochondria are involved in ferroptosis is under debate. Here, we demonstrate that mitochondria play a crucial role in cysteine-deprivation-induced ferroptosis but not in that induced by inhibiting glutathione peroxidase-4 (GPX4), the most downstream component of the ferroptosis pathway. Mechanistically, cysteine deprivation leads to mitochondrial membrane potential hyperpolarization and lipid peroxide accumulation. Inhibition of mitochondrial TCA cycle or electron transfer chain (ETC) mitigated mitochondrial membrane potential hyperpolarization, lipid peroxide accumulation, and ferroptosis. Blockage of glutaminolysis had the same inhibitory effect, which was counteracted by supplying downstream TCA cycle intermediates. Importantly, loss of function of fumarate hydratase, a tumor suppressor and TCA cycle component, confers resistance to cysteine-deprivation-induced ferroptosis. Collectively, this work demonstrates the crucial role of mitochondria in cysteine-deprivation-induced ferroptosis and implicates ferroptosis in tumor suppression.


Asunto(s)
Ciclo del Ácido Cítrico , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Fibroblastos/enzimología , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/enzimología , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Glutamina/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Mutación , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
PLoS Genet ; 20(4): e1011248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662777

RESUMEN

The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.


Asunto(s)
Arsénico , Estrés Oxidativo , Sitios de Carácter Cuantitativo , Animales , Ratones , Arsénico/toxicidad , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Línea Celular , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Interacción Gen-Ambiente , Intoxicación por Arsénico/genética , Mapeo Cromosómico
10.
Proc Natl Acad Sci U S A ; 121(34): e2320257121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39150784

RESUMEN

Lysosomal degradation pathways coordinate the clearance of superfluous and damaged cellular components. Compromised lysosomal degradation is a hallmark of many degenerative diseases, including lysosomal storage diseases (LSDs), which are caused by loss-of-function mutations within both alleles of a lysosomal hydrolase, leading to lysosomal substrate accumulation. Gaucher's disease, characterized by <15% of normal glucocerebrosidase function, is the most common LSD and is a prominent risk factor for developing Parkinson's disease. Here, we show that either of two structurally distinct small molecules that modulate PIKfyve activity, identified in a high-throughput cellular lipid droplet clearance screen, can improve glucocerebrosidase function in Gaucher patient-derived fibroblasts through an MiT/TFE transcription factor that promotes lysosomal gene translation. An integrated stress response (ISR) antagonist used in combination with a PIKfyve modulator further improves cellular glucocerebrosidase activity, likely because ISR signaling appears to also be slightly activated by treatment by either small molecule at the higher doses employed. This strategy of combining a PIKfyve modulator with an ISR inhibitor improves mutant lysosomal hydrolase function in cellular models of additional LSD.


Asunto(s)
Fibroblastos , Glucosilceramidasa , Enfermedades por Almacenamiento Lisosomal , Lisosomas , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología
11.
EMBO J ; 41(4): e106825, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35023164

RESUMEN

Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.


Asunto(s)
Envejecimiento/fisiología , Ácido Ascórbico/farmacología , Diabetes Mellitus Experimental/prevención & control , Proteína de Retinoblastoma/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factor de Transcripción E2F1/metabolismo , Desarrollo Embrionario/genética , Femenino , Fibroblastos/efectos de los fármacos , Técnicas de Sustitución del Gen , Células Secretoras de Insulina/patología , Ratones , Fosforilación , Embarazo , Proteína de Retinoblastoma/genética , Telómero/genética
12.
Cell ; 144(4): 499-512, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21315436

RESUMEN

Aneuploidy, an incorrect chromosome number, is a hallmark of cancer. Compounds that cause lethality in aneuploid, but not euploid, cells could therefore provide new cancer therapies. We have identified the energy stress-inducing agent AICAR, the protein folding inhibitor 17-AAG, and the autophagy inhibitor chloroquine as exhibiting this property. AICAR induces p53-mediated apoptosis in primary mouse embryonic fibroblasts (MEFs) trisomic for chromosome 1, 13, 16, or 19. AICAR and 17-AAG, especially when combined, also show efficacy against aneuploid human cancer cell lines. Our results suggest that compounds that interfere with pathways that are essential for the survival of aneuploid cells could serve as a new treatment strategy against a broad spectrum of human tumors.


Asunto(s)
Aneuploidia , Antineoplásicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis , Benzoquinonas/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Segregación Cromosómica , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Humanos , Lactamas Macrocíclicas/farmacología , Ratones , Neoplasias/tratamiento farmacológico , Ribonucleótidos/farmacología , Trisomía
13.
Nature ; 581(7806): 83-88, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376950

RESUMEN

Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision1,2. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-κB and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Degeneración Retiniana/terapia , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/trasplante , Visión Ocular/efectos de los fármacos , Animales , Proteína Axina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Visión Ocular/fisiología
14.
Mol Cell ; 72(5): 862-874.e5, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318442

RESUMEN

mRNAs carry two layers of information, the genetic code and the information that dictates their post-transcriptional fate. The latter function relies on a complex interplay between cis-elements and trans-regulators, and unbiased identification of these elements is still challenging. To identify cis-elements that control gene expression, we use dimethyl sulfate (DMS) mutational profiling with sequencing and map changes in mRNA secondary structure following viral infection. Our dynamic structural data reveal a major role for ribosomes in unwinding secondary structures, which is further supported by the relationship we uncover between structure and translation efficiency. Moreover, our analysis revealed dozens of regions in viral and cellular mRNAs that exhibit changes in secondary structure. In-depth analysis of these regions reveals cis-elements in 3' UTRs that regulate mRNA stability and elements within coding sequences that control translation. Overall, our study demonstrates how mapping dynamic changes in mRNA structure allows unbiased identification of functional regulatory elements.


Asunto(s)
Citomegalovirus/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Fosfoproteínas/genética , Biosíntesis de Proteínas , ARN Mensajero/química , Proteínas de la Matriz Viral/genética , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutágenos/farmacología , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Ésteres del Ácido Sulfúrico/farmacología , Proteínas de la Matriz Viral/metabolismo
15.
Mol Cell ; 72(4): 778-785.e3, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454562

RESUMEN

Proper control of the mitochondrial Ca2+ uniporter's pore (MCU) is required to allow Ca2+-dependent activation of oxidative metabolism and to avoid mitochondrial Ca2+ overload and cell death. The MCU's gatekeeping and cooperative activation is mediated by the Ca2+-sensing MICU1 protein, which has been proposed to form dimeric complexes anchored to the EMRE scaffold of MCU. We unexpectedly find that MICU1 suppresses inhibition of MCU by ruthenium red/Ru360, which bind to MCU's DIME motif, the selectivity filter. This led us to recognize in MICU1's sequence a putative DIME interacting domain (DID), which is required for both gatekeeping and cooperative activation of MCU and for cell survival. Thus, we propose that MICU1 has to interact with the D-ring formed by the DIME domains in MCU to control the uniporter.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Compuestos de Rutenio/farmacología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética
16.
Genes Dev ; 32(13-14): 944-952, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945887

RESUMEN

The levels of copper, which is an essential element in living organisms, are under tight homeostatic control. Inactivating mutations in ATP7B, a P-type Cu-ATPase that functions in copper excretion, promote aberrant accumulation of the metal, primarily the in liver and brain. This condition underlies Wilson's disease, a severe autosomal recessive disorder characterized by profound hepatic and neurological deficits. Current treatment regimens rely on the use of broad specificity metal chelators as "decoppering" agents; however, there are side effects that limit their effectiveness. Here, we present the characterization of DPM-1001 {methyl 4-[7-hydroxy-10,13-dimethyl-3-({4-[(pyridin-2-ylmethyl)amino]butyl}amino)hexadecahydro-1H-cyclopenta[a]phenanthren-17-yl] pentanoate} as a potent and highly selective chelator of copper that is orally bioavailable. Treatment of cell models, including fibroblasts derived from Wilson's disease patients, eliminated adverse effects associated with copper accumulation. Furthermore, treatment of the toxic milk mouse model of Wilson's disease with DPM-1001 lowered the levels of copper in the liver and brain, removing excess copper by excretion in the feces while ameliorating symptoms associated with the disease. These data suggest that it may be worthwhile to investigate DPM-1001 further as a new therapeutic agent for the treatment of Wilson's disease, with potential for application in other indications associated with elevated copper, including cancer and neurodegenerative diseases.


Asunto(s)
Quelantes/farmacología , Cobre/metabolismo , Degeneración Hepatolenticular/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Línea Celular , Quelantes/uso terapéutico , Cobre/toxicidad , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Degeneración Hepatolenticular/fisiopatología , Hígado/efectos de los fármacos , Hígado/patología , Ratones
17.
EMBO J ; 40(11): e106771, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33909912

RESUMEN

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.


Asunto(s)
Fibroblastos/metabolismo , Sulfuro de Hidrógeno/metabolismo , Quinasa Syk/antagonistas & inhibidores , Animales , Calcineurina/metabolismo , Células Cultivadas , Cisteína/metabolismo , Fibroblastos/efectos de los fármacos , Glicina/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Oxazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Eur J Immunol ; 54(10): e2451207, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38980268

RESUMEN

Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTßR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTßR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Estructuras Linfoides Terciarias , Animales , Estructuras Linfoides Terciarias/inmunología , Ratones , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Inmunidad Innata/efectos de los fármacos , Quimiocina CCL19/metabolismo , Pulmón/inmunología , Quimiocina CCL21/metabolismo , Quimiocina CXCL13/metabolismo , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/inmunología , Ratones Endogámicos C57BL , Células del Estroma/inmunología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Linfotoxina-alfa/metabolismo , Linfotoxina-alfa/inmunología , Centro Germinal/inmunología , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Transducción de Señal/inmunología , Transducción de Señal/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Ratones Noqueados , Quimiocina CXCL9/metabolismo
19.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35005773

RESUMEN

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Cartílago Hialino/citología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis , Fibroblastos/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Cartílago Hialino/metabolismo , Cartílago Hialino/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
20.
Am J Pathol ; 194(9): 1764-1779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879081

RESUMEN

Conjunctival fibrosis is a common postoperative complication of glaucoma filtration surgery, resulting in uncontrolled intraocular pressure and surgery failure. Therefore, there is an urgent need to understand the molecular mechanisms underlying conjunctival fibrosis and to explore novel pharmacologic anti-fibrosis therapies for glaucoma filtration surgery. Herein, the 4-dimensional data-independent acquisition (4D-DIA) quantitative proteomic results, coupled with experimental data, revealed the activation of the Wnt/ß-catenin pathway in transforming growth factor (TGF)-ß1-induced human conjunctival fibroblasts (HConFs). Treatment with ICG-001, a Wnt/ß-catenin inhibitor, effectively inhibited cell proliferation and migration in TGFß1-treated HConFs. ICG-001 treatment alleviated the increased generation of extracellular matrix proteins induced by TGFß1. In addition, ICG-001 reduced the expression level of α smooth muscle actin (α-SMA) and inhibited cell contractility in TGFß1-treated HConFs. Proteomics data further suggested that αB-crystallin (CRYAB) was a downstream target of Wnt/ß-catenin, which was up-regulated by TGFß1 and down-regulated by ICG-001. Immunoblotting assay also indicated that ICG-001 reduced the expressions of ubiquitin and ß-catenin in TGFß1-treated HConFs, implying that CRYAB stabilized ß-catenin by inhibiting its ubiquitination degradation. Exogenous CRYAB promoted cell viability, increased extracellular matrix protein levels, and up-regulated α-SMA expression of HConFs under TGFß1 stimulation. CRYAB rescued TGFß1-induced fibrotic responses that were suppressed by ICG-001. In conclusion, this study elucidates the regulatory mechanism of the Wnt/ß-catenin/CRYAB pathway in conjunctival fibrosis, offering promising therapeutic targets for mitigating bleb scarring after glaucoma filtration surgery.


Asunto(s)
Conjuntiva , Fibroblastos , Fibrosis , Factor de Crecimiento Transformador beta1 , Vía de Señalización Wnt , Humanos , beta Catenina/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes , Proliferación Celular/efectos de los fármacos , Conjuntiva/patología , Conjuntiva/metabolismo , Conjuntiva/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de los fármacos , Proteómica/métodos , Pirimidinonas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA