Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.077
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 34: 1-28, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30059630

RESUMEN

Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.


Asunto(s)
Biología Celular/tendencias , Citoplasma/genética , Filamentos Intermedios/genética , Microtúbulos/genética , Actinas/química , Actinas/genética , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/genética , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Filamentos Intermedios/química , Microtúbulos/química , Mitosis/genética , Transducción de Señal/genética
3.
Cell ; 163(7): 1783-1795, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687362

RESUMEN

Touch perception begins with activation of low-threshold mechanoreceptors (LTMRs) in the periphery. LTMR terminals exhibit tremendous morphological heterogeneity that specifies their mechanical receptivity. In a survey of mammalian skin, we found a preponderance of neurofilament-heavy-chain(+) circumferential endings associated with hair follicles, prompting us to develop a genetic strategy to interrogate these neurons. Targeted in vivo recordings revealed them to be Aß field-LTMRs, identified 50 years ago but largely elusive thereafter. Remarkably, while Aß field-LTMRs are highly sensitive to gentle stroking of the skin, they are unresponsive to hair deflection, and they encode skin indentation in the noxious range across large, spotty receptive fields. Individual Aß field-LTMRs form up to 180 circumferential endings, making them the most anatomically expansive LTMR identified to date. Thus, Aß field-LTMRs are a major mammalian LTMR subtype that forms circumferential endings in hairy skin, and their sensitivity to gentle skin stroking arises through integration across many low-sensitivity circumferential endings.


Asunto(s)
Mecanorreceptores/metabolismo , Tacto , Animales , Axones/metabolismo , Tronco Encefálico/metabolismo , Fenómenos Electrofisiológicos , Folículo Piloso/metabolismo , Filamentos Intermedios/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Piel/citología , Piel/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo
4.
Genes Dev ; 36(7-8): 391-407, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487686

RESUMEN

More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.


Asunto(s)
Filamentos Intermedios , Vimentina/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Ratones , Vimentina/genética
5.
EMBO J ; 42(18): e111252, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37519262

RESUMEN

Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.


Asunto(s)
Filamentos Intermedios , Estrés Proteotóxico , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Autofagia
6.
PLoS Genet ; 20(2): e1011138, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315730

RESUMEN

The presence of large protein inclusions is a hallmark of neurodegeneration, and yet the precise molecular factors that contribute to their formation remain poorly understood. Screens using aggregation-prone proteins have commonly relied on downstream toxicity as a readout rather than the direct formation of aggregates. Here, we combined a genome-wide CRISPR knockout screen with Pulse Shape Analysis, a FACS-based method for inclusion detection, to identify direct modifiers of TDP-43 aggregation in human cells. Our screen revealed both canonical and novel proteostasis genes, and unearthed SRRD, a poorly characterized protein, as a top regulator of protein inclusion formation. APEX biotin labeling reveals that SRRD resides in proximity to proteins that are involved in the formation and breakage of disulfide bonds and to intermediate filaments, suggesting a role in regulation of the spatial dynamics of the intermediate filament network. Indeed, loss of SRRD results in aberrant intermediate filament fibrils and the impaired formation of aggresomes, including blunted vimentin cage structure, during proteotoxic stress. Interestingly, SRRD also localizes to aggresomes and unfolded proteins, and rescues proteotoxicity in yeast whereby its N-terminal low complexity domain is sufficient to induce this affect. Altogether this suggests an unanticipated and broad role for SRRD in cytoskeletal organization and cellular proteostasis.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Filamentos Intermedios , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Citoesqueleto/genética , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(7): e2309984121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324567

RESUMEN

The protein crescentin is required for the crescent shape of the freshwater bacterium Caulobacter crescentus (vibrioides). Crescentin forms a filamentous structure on the inner, concave side of the curved cells. It shares features with eukaryotic intermediate filament (IF) proteins, including the formation of static filaments based on long and parallel coiled coils, the protein's length, structural roles in cell and organelle shape determination and the presence of a coiled coil discontinuity called the "stutter." Here, we have used electron cryomicroscopy (cryo-EM) to determine the structure of the full-length protein and its filament, exploiting a crescentin-specific nanobody. The filament is formed by two strands, related by twofold symmetry, that each consist of two dimers, resulting in an octameric assembly. Crescentin subunits form longitudinal contacts head-to-head and tail-to-tail, making the entire filament non-polar. Using in vivo site-directed cysteine cross-linking, we demonstrated that contacts observed in the in vitro filament structure exist in cells. Electron cryotomography (cryo-ET) of cells expressing crescentin showed filaments on the concave side of the curved cells, close to the inner membrane, where they form a band. When comparing with current models of IF proteins and their filaments, which are also built from parallel coiled coil dimers and lack overall polarity, it emerges that IF proteins form head-to-tail longitudinal contacts in contrast to crescentin and hence several inter-dimer contacts in IFs have no equivalents in crescentin filaments. Our work supports the idea that intermediate filament-like proteins achieve their shared polymerization and mechanical properties through a variety of filament architectures.


Asunto(s)
Caulobacter crescentus , Filamentos Intermedios , Filamentos Intermedios/metabolismo , Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Caulobacter crescentus/metabolismo
8.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39206824

RESUMEN

Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.


Asunto(s)
Filamentos Intermedios , Filamentos Intermedios/metabolismo , Humanos , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/genética , Transducción de Señal , Citoesqueleto/metabolismo
9.
Nature ; 585(7825): 404-409, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848249

RESUMEN

To implant in the uterus, the mammalian embryo first specifies two cell lineages: the pluripotent inner cell mass that forms the fetus, and the outer trophectoderm layer that forms the placenta1. In many organisms, asymmetrically inherited fate determinants drive lineage specification2, but this is not thought to be the case during early mammalian development. Here we show that intermediate filaments assembled by keratins function as asymmetrically inherited fate determinants in the mammalian embryo. Unlike F-actin or microtubules, keratins are the first major components of the cytoskeleton that display prominent cell-to-cell variability, triggered by heterogeneities in the BAF chromatin-remodelling complex. Live-embryo imaging shows that keratins become asymmetrically inherited by outer daughter cells during cell division, where they stabilize the cortex to promote apical polarization and YAP-dependent expression of CDX2, thereby specifying the first trophectoderm cells of the embryo. Together, our data reveal a mechanism by which cell-to-cell heterogeneities that appear before the segregation of the trophectoderm and the inner cell mass influence lineage fate, via differential keratin regulation, and identify an early function for intermediate filaments in development.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Queratinas/metabolismo , Actinas/metabolismo , Animales , División Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Ectodermo/citología , Embrión de Mamíferos/embriología , Femenino , Humanos , Filamentos Intermedios/metabolismo , Ratones , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Trofoblastos/citología
10.
Proc Natl Acad Sci U S A ; 120(48): e2307389120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983515

RESUMEN

Granulocytes are indispensable for various immune responses. Unlike other cell types in the body, the nuclei of granulocytes, particularly neutrophils, are heavily segmented into multiple lobes. Although this distinct morphological feature has long been observed, the underlying mechanism remains incompletely characterized. In this study, we utilize cryo-electron tomography to examine the nuclei of mouse neutrophils, revealing the cytoplasmic enrichment of intermediate filaments on the concave regions of the nuclear envelope. Aided by expression profiling and immuno-electron microscopy, we then elucidate that the intermediate-filament protein vimentin is responsible for such perinuclear structures. Of importance, exogenously expressed vimentin in nonimmune cells is sufficient to form cytoplasmic filaments wrapping on the concave nuclear surface. Moreover, genetic deletion of the protein causes a significant reduction of the number of nuclear lobes in neutrophils and eosinophils, mimicking the hematological condition of the Pelger-Huët anomaly. These results have uncovered a new component establishing the nuclear segmentation of granulocytes.


Asunto(s)
Filamentos Intermedios , Neutrófilos , Animales , Ratones , Neutrófilos/metabolismo , Vimentina/metabolismo , Núcleo Celular , Eosinófilos
11.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36594661

RESUMEN

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.


Asunto(s)
Infecciones Bacterianas , Filamentos Intermedios , Humanos , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Células Endoteliales/metabolismo , Inflamación
12.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732478

RESUMEN

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Ratones , Humanos , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Aparato de Golgi/metabolismo , Mamíferos/metabolismo
13.
Ann Neurol ; 95(2): 211-216, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110839

RESUMEN

OBJECTIVE: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS: Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Superóxido Dismutasa-1 , Filamentos Intermedios , Biomarcadores , Pronóstico , Proteínas de Neurofilamentos
14.
PLoS Biol ; 20(9): e3001737, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36099296

RESUMEN

The nutrient-activated mTORC1 (mechanistic target of rapamycin kinase complex 1) signaling pathway determines cell size by controlling mRNA translation, ribosome biogenesis, protein synthesis, and autophagy. Here, we show that vimentin, a cytoskeletal intermediate filament protein that we have known to be important for wound healing and cancer progression, determines cell size through mTORC1 signaling, an effect that is also manifested at the organism level in mice. This vimentin-mediated regulation is manifested at all levels of mTOR downstream target activation and protein synthesis. We found that vimentin maintains normal cell size by supporting mTORC1 translocation and activation by regulating the activity of amino acid sensing Rag GTPase. We also show that vimentin inhibits the autophagic flux in the absence of growth factors and/or critical nutrients, demonstrating growth factor-independent inhibition of autophagy at the level of mTORC1. Our findings establish that vimentin couples cell size and autophagy through modulating Rag GTPase activity of the mTORC1 signaling pathway.


Asunto(s)
Filamentos Intermedios , Complejos Multiproteicos , Animales , Autofagia/fisiología , Tamaño de la Célula , GTP Fosfohidrolasas/metabolismo , Filamentos Intermedios/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Transducción de Señal , Vimentina/metabolismo
15.
Nat Rev Mol Cell Biol ; 14(1): 13-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23212477

RESUMEN

The nuclear lamina is an important structural determinant for the nuclear envelope as a whole, attaching chromatin domains to the nuclear periphery and localizing some nuclear envelope proteins. The major components of the lamina are the A-type and B-type lamins, which are members of the intermediate filament protein family. Whereas the expression of A-type lamins is developmentally regulated, B-type lamins, as a class, are found in all cells. The association of B-type lamins with many aspects of nuclear function has led to the view that these are essential proteins, and there is growing evidence suggesting that they regulate cellular senescence. However, B-type lamins are dispensable in certain cell types in vivo, and neither A-type nor B-type lamins may be required in early embryos or embryonic stem cells. The picture that is beginning to emerge is of a complex network of interactions at the nuclear periphery that may be defined by cell- and tissue-specific functions.


Asunto(s)
Senescencia Celular , Lámina Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Envejecimiento Prematuro/genética , Animales , Huesos/anomalías , Núcleo Celular/genética , Núcleo Celular/metabolismo , Senescencia Celular/genética , Cromatina , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Ratones , Distrofia Muscular Animal/genética , Mutación , Lámina Nuclear/genética
16.
Brain ; 147(3): 961-969, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128551

RESUMEN

There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-ß (Aß), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aß/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aß-positive but still tau-negative individuals. These increases were steeper in Aß-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen de Difusión por Resonancia Magnética , Péptidos beta-Amiloides , Filamentos Intermedios
17.
Brain ; 147(1): 12-25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540027

RESUMEN

Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-ß). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Proteínas de Neurofilamentos , Estudios Transversales , Filamentos Intermedios , Péptidos beta-Amiloides , Biomarcadores
18.
Proc Natl Acad Sci U S A ; 119(10): e2115217119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235449

RESUMEN

The cytoskeleton of eukaryotic cells is primarily composed of networks of filamentous proteins, F-actin, microtubules, and intermediate filaments. Interactions among the cytoskeletal components are important in determining cell structure and in regulating cell functions. For example, F-actin and microtubules work together to control cell shape and polarity, while the subcellular organization and transport of vimentin intermediate filament (VIF) networks depend on their interactions with microtubules. However, it is generally thought that F-actin and VIFs form two coexisting but separate networks that are independent due to observed differences in their spatial distribution and functions. In this paper, we present a closer investigation of both the structural and functional interplay between the F-actin and VIF cytoskeletal networks. We characterize the structure of VIFs and F-actin networks within the cell cortex using structured illumination microscopy and cryo-electron tomography. We find that VIFs and F-actin form an interpenetrating network (IPN) with interactions at multiple length scales, and VIFs are integral components of F-actin stress fibers. From measurements of recovery of cell contractility after transient stretching, we find that the IPN structure results in enhanced contractile forces and contributes to cell resilience. Studies of reconstituted networks and dynamic measurements in cells suggest direct and specific associations between VIFs and F-actin. From these results, we conclude that VIFs and F-actin work synergistically, both in their structure and in their function. These results profoundly alter our understanding of the contributions of the components of the cytoskeleton, particularly the interactions between intermediate filaments and F-actin.


Asunto(s)
Citoplasma/metabolismo , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Biopolímeros/metabolismo , Células Cultivadas , Tomografía con Microscopio Electrónico/métodos , Filamentos Intermedios/química , Ratones , Vimentina/química
19.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193960

RESUMEN

Emerging microbe infections, such as Zika virus (ZIKV), pose an increasing threat to human health. Investigations on ZIKV replication have revealed the construction of replication complexes (RCs), but the role of cytoskeleton in this process is largely unknown. Here, we investigated the function of cytoskeletal intermediate filament protein vimentin in the life cycle of ZIKV infection. Using advanced imaging techniques, we uncovered that vimentin filaments undergo drastic reorganization upon viral protein synthesis to form a perinuclear cage-like structure that embraces and concentrates RCs. Genetic removal of vimentin markedly disrupted the integrity of RCs and resulted in fragmented subcellular dispersion of viral proteins. This led to reduced viral genome replication, viral protein production, and release of infectious virions, without interrupting viral binding and entry. Furthermore, mass spectrometry and RNA-sequencing screens identified interactions and interplay between vimentin and hundreds of endoplasmic reticulum (ER)-resident RNA-binding proteins. Among them, the cytoplasmic-region of ribosome receptor binding protein 1, an ER transmembrane protein that directly binds viral RNA, interacted with and was regulated by vimentin, resulting in modulation of ZIKV replication. Together, the data in our work reveal a dual role for vimentin as a structural element for RC integrity and as an RNA-binding-regulating hub during ZIKV infection, thus unveiling a layer of interplay between Zika virus and host cell.


Asunto(s)
Vimentina/metabolismo , Infección por el Virus Zika/metabolismo , Animales , Línea Celular , China , Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Interacciones Microbiota-Huesped/fisiología , Humanos , Filamentos Intermedios/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Vimentina/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Virus Zika/metabolismo , Virus Zika/patogenicidad , Virus Zika/fisiología , Infección por el Virus Zika/virología
20.
J Infect Dis ; 229(1): 183-188, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647876

RESUMEN

Malaria can cause brain injury. Neurofilament light chain (NfL) is a biomarker of neuronal damage. Here we examined longitudinal plasma NfL levels in children aged 1-12 years with uncomplicated and severe malaria from Mozambique. NfL levels were similar in all malaria cases at hospital admission. However, levels increased over time and the increment was significantly higher in severe malaria cases with neurological manifestations (ie, coma, impaired consciousness, or repeated seizures). NfL may be useful to identify and quantify brain injury in malaria.


Asunto(s)
Lesiones Encefálicas , Malaria , Niño , Humanos , Filamentos Intermedios , Proteínas de Neurofilamentos , Biomarcadores , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA