RESUMEN
Follicular helper T cells (TFH cells) and follicular regulatory T cells (TFR cells) regulate the quantity and quality of humoral immunity. Although both cell types express the costimulatory receptor ICOS and require the transcription factor Bcl-6 for their differentiation, the ICOS-dependent pathways that coordinate their responses are not well understood. Here we report that activation of ICOS in CD4(+) T cells promoted interaction of the p85α regulatory subunit of the signaling kinase PI(3)K and intracellular osteopontin (OPN-i), followed by translocation of OPN-i to the nucleus, its interaction with Bcl-6 and protection of Bcl-6 from ubiquitin-dependent proteasome degradation. Post-translational protection of Bcl-6 by OPN-i was essential for sustained responses of TFH cells and TFR cells and regulation of the germinal center B cell response to antigen. Thus, the p85α-OPN-i axis represents a molecular bridge that couples activation of ICOS to Bcl-6-dependent functional differentiation of TFH cells and TFR cells; this suggests new therapeutic avenues to manipulate the responses of these cells.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Osteopontina/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Femenino , Citometría de Flujo , Centro Germinal/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Osteopontina/genética , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-bcl-6/genética , ARN Mensajero/química , ARN Mensajero/genética , Distribución Aleatoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos EspecíficosRESUMEN
Lipopolysaccharide activates plasma-membrane signaling and endosomal signaling by Toll-like receptor 4 (TLR4) through the TIRAP-MyD88 and TRAM-TRIF adaptor complexes, respectively, but it is unclear how the signaling switch between these cell compartments is coordinated. In dendritic cells, we found that the p110δ isoform of phosphatidylinositol-3-OH kinase (PI(3)K) induced internalization of TLR4 and dissociation of TIRAP from the plasma membrane, followed by calpain-mediated degradation of TIRAP. Accordingly, inactivation of p110δ prolonged TIRAP-mediated signaling from the plasma membrane, which augmented proinflammatory cytokine production while decreasing TRAM-dependent endosomal signaling that generated anti-inflammatory cytokines (interleukin 10 and interferon-ß). In line with that altered signaling output, p110δ-deficient mice showed enhanced endotoxin-induced death. Thus, by controlling the 'topology' of TLR4 signaling complexes, p110δ balances overall homeostasis in the TLR4 pathway.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Células Dendríticas/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Animales , Calpaína/farmacología , Compartimento Celular/inmunología , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/inmunología , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/genética , Endosomas/inmunología , Expresión Génica/efectos de los fármacos , Expresión Génica/inmunología , Interferón beta/biosíntesis , Interferón beta/inmunología , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Isoenzimas/genética , Isoenzimas/inmunología , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Noqueados , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Choque Séptico/genética , Choque Séptico/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 4/genéticaRESUMEN
The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found thatCryptococcus neoformansindependently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing,Cryptococcusinitiated a novel Rac â PI3K â Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity againstC. neoformans Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to killC. neoformans.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Cryptococcus neoformans/fisiología , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Proteínas de Unión al GTP rac/inmunología , Proteína de Unión al GTP rac1/inmunología , Familia-src Quinasas/inmunología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/microbiología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Pironas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Familia-src Quinasas/genética , Proteína RCA2 de Unión a GTPRESUMEN
The phosphatidylinositol-3-kinase (PI3K) pathway has an essential role in signal transduction, where it is required for a number of different cellular processes including proliferation, differentiation, development, migration and growth. In the immune system, PI3K regulates inflammation by controlling the activation and recruitment of leukocytes. The generation of conditional knockout mice has allowed the study of PI3K isoforms specifically in B and T lymphocytes, and demonstrates the importance of intact signalling in their development and function. PI3K signalling must be tightly regulated in lymphocytes as excessive PI3K can lead to autoimmunity, immunodeficiency or cancer, whilst diminished signalling can result in developmental defects and immunodeficiency. Recent advances in the understanding of PI3K signalling have hastened the application of isoform-specific PI3K inhibitors, which are currently undergoing clinical trials. This review will focus on the p110δ catalytic subunit of the class 1A family of PI3K, and its role in the development and activation of B lymphocytes through various downstream effectors.
Asunto(s)
Linfocitos B/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Inmunodeficiencia Variable Común/inmunología , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Animales , Autoinmunidad/genética , Linfocitos B/patología , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Inmunodeficiencia Variable Común/enzimología , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/patología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de SeñalRESUMEN
Neutrophils are generally the first leukocytes to arrive at sites of inflammation or injury, where they release a variety of inflammatory mediators, which contribute to shaping the ensuing immune response. Here, we show that in neutrophils exposed to physiological stimuli (i.e. LPS and TNF-α), inhibition of the PI3K signaling pathway impairs the synthesis and secretion of IL-8, Mip-1α, and Mip-1ß. Further investigation showed that Mip-1α and Mip-1ß gene transcription was similarly decreased, whereas IL-8 transcription and steady-state mRNA levels were unaffected. Accordingly, PI3K inhibition had no impact on NF-κB or C/EBP activation, which are essential for IL-8 transcription, but the basis for this selective inhibition of chemokine transcription remains elusive. We nevertheless identified translational targets of the PI3K pathway (S6, S6 kinase, 4E-BP1). Inhibitor studies and overexpression experiments further established that the various effects of PI3K on chemokine production can be ascribed to p85α and p110δ subunits. Finally, we show that in LPS- and TNF-activated neutrophils, PI3K acts downstream of the kinases p38 MAPK and TAK1. Given the importance of neutrophils and their products in numerous chronic inflammatory disorders, the PI3K pathway could represent an attractive therapeutic target.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Activación Neutrófila , Neutrófilos/metabolismo , Línea Celular Transformada , Cromonas/farmacología , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Humanos , Imidazoles/farmacología , Mediadores de Inflamación/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Morfolinas/farmacología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Zearalenona/análogos & derivados , Zearalenona/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidoresRESUMEN
The Toll-interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP) represents a key intracellular signalling molecule regulating diverse immune responses. Its capacity to function as an adaptor molecule has been widely investigated in relation to Toll-like Receptor (TLR)-mediated innate immune signalling. Since the discovery of TIRAP in 2001, initial studies were mainly focused on its role as an adaptor protein that couples Myeloid differentiation factor 88 (MyD88) with TLRs, to activate MyD88-dependent TLRs signalling. Subsequent studies delineated TIRAP's role as a transducer of signalling events through its interaction with non-TLR signalling mediators. Indeed, the ability of TIRAP to interact with an array of intracellular signalling mediators suggests its central role in various immune responses. Therefore, continued studies that elucidate the molecular basis of various TIRAP-protein interactions and how they affect the signalling magnitude, should provide key information on the inflammatory disease mechanisms. This review summarizes the TIRAP recruitment to activated receptors and discusses the mechanism of interactions in relation to the signalling that precede acute and chronic inflammatory diseases. Furthermore, we highlighted the significance of TIRAP-TIR domain containing binding sites for several intracellular inflammatory signalling molecules. Collectively, we discuss the importance of the TIR domain in TIRAP as a key interface involved in protein interactions which could hence serve as a therapeutic target to dampen the extent of acute and chronic inflammatory conditions.
Asunto(s)
Inflamación/inmunología , Glicoproteínas de Membrana/inmunología , Receptores de Interleucina-1/inmunología , Agammaglobulinemia Tirosina Quinasa/inmunología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Humanos , Inmunidad Innata , Inflamación/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mapas de Interacción de Proteínas , Proteína Quinasa C-delta/inmunología , Proteína Quinasa C-delta/metabolismo , Receptor para Productos Finales de Glicación Avanzada/inmunología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores de Interleucina-1/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Phosphatidylinositol-3 kinases (PI3Ks) modulate cellular growth, proliferation, and survival; dysregulation of the PI3K pathway can lead to autoimmune disease and cancer. PIK3IP1 (or transmembrane inhibitor of PI3K [TrIP]) is a putative transmembrane regulator of PI3K. TrIP contains an extracellular kringle domain and an intracellular domain with homology to the inter-SH2 domain of the PI3K regulatory subunit p85, but the mechanism of TrIP function is poorly understood. We show that both the kringle and p85-like domains are necessary for TrIP inhibition of PI3K and that TrIP is down-modulated from the surface of T cells during T cell activation. In addition, we present evidence that the kringle domain may modulate TrIP function by mediating oligomerization. Using an inducible knockout mouse model, we show that TrIP-deficient T cells exhibit more robust activation and can mediate clearance of Listeria monocytogenes infection faster than WT mice. Thus, TrIP is a negative regulator of T cell activation and may represent a novel target for immune modulation.
Asunto(s)
Proteínas Portadoras/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Animales , Proteínas Portadoras/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Listeria monocytogenes/inmunología , Listeriosis/genética , Listeriosis/inmunología , Listeriosis/patología , Proteínas de la Membrana , Ratones , Ratones Transgénicos , Linfocitos T/patologíaRESUMEN
Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis.
Asunto(s)
Artritis Experimental/tratamiento farmacológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Subunidades de Proteína/antagonistas & inhibidores , Pirazinas/farmacología , Animales , Anticuerpos/farmacología , Artritis Experimental/enzimología , Artritis Experimental/inmunología , Artritis Experimental/patología , Antígenos CD28/genética , Antígenos CD28/inmunología , Complejo CD3/genética , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Expresión Génica , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/inmunología , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunologíaRESUMEN
TCR-induced signaling controls T cell activation that drives adaptive immunity against infections, but it can also induce dysfunctional T cell responses that promote pathologic disease. The PI3K pathway regulates many downstream effector responses after TCR stimulation. However, the molecular mechanisms that induce PI3K function downstream of the TCR are not fully understood. We have previously shown that Pyk2 is activated downstream of the TCR in a PI3K-independent manner. Although Pyk2 controls adhesion, proliferation, and cytokine production in T cells, the mechanisms by which it controls these processes are not known. In this study, we generated Pyk2-deficient human T cells to elucidate further the role that this kinase plays in TCR-induced effector functions and signaling. We observed that Pyk2 localized with the p85 regulatory subunit of PI3K at the LAT complex and that PI3K-dependent signaling was impaired in Pyk2-deficient T cells. Likewise, functions downstream of PI3K, including IFN-γ production and proliferation, were also suppressed in human T cells deficient in Pyk2. Collectively, these data demonstrate that Pyk2 is a critical regulator of PI3K function downstream of the TCR.
Asunto(s)
Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Quinasa 2 de Adhesión Focal/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Adhesión Celular/inmunología , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Activación Enzimática/genética , Activación Enzimática/inmunología , Femenino , Quinasa 2 de Adhesión Focal/genética , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Masculino , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citologíaRESUMEN
Sphingolipid- and cholesterol-rich lipid raft microdomains are important in the initiation of BCR signaling. Although it is known that lipid rafts promote the coclustering of BCR and Lyn kinase microclusters within the B cell IS, the molecular mechanism of the recruitment of lipid rafts into the B cell IS is not understood completely. Here, we report that the synaptic recruitment of lipid rafts is dependent on the cytoskeleton-remodeling proteins, RhoA and Vav. Such an event is also efficiently regulated by motor proteins, myosin IIA and dynein. Further evidence suggests the synaptic recruitment of lipid rafts is, by principle, an event triggered by BCR signaling molecules and second messenger molecules. BCR-activating coreceptor CD19 potently enhances such an event depending on its cytoplasmic Tyr421 and Tyr482 residues. The enhancing function of the CD19-PI3K module in synaptic recruitment of lipid rafts is also confirmed in human peripheral blood B cells. Thus, these results improve our understanding of the molecular mechanism of the recruitment of lipid raft microdomains in B cell IS.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Antígenos CD19/genética , Linfocitos B/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Sinapsis Inmunológicas/metabolismo , Microdominios de Membrana/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/inmunología , Antígenos CD19/inmunología , Linfocitos B/inmunología , Transporte Biológico , Línea Celular , Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Dineínas/genética , Dineínas/inmunología , Regulación de la Expresión Génica , Humanos , Sinapsis Inmunológicas/química , Activación de Linfocitos , Microdominios de Membrana/inmunología , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/inmunología , Familia-src Quinasas/genética , Familia-src Quinasas/inmunologíaRESUMEN
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Células Asesinas Naturales/inmunología , Monoéster Fosfórico Hidrolasas/inmunología , Animales , Procesos de Crecimiento Celular , Movimiento Celular , Supervivencia Celular , Humanos , Inmunidad Innata , Inositol Polifosfato 5-Fosfatasas , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Transducción de Señal/inmunologíaRESUMEN
The roots and rhizomes of licorice ( Glycyrrhia ) species have been used extensively as natural sweeteners and herbal medicines. The aim of this work was to determine the in vitro anti-inflammatory effects of glycyrrhizic acid (GA) and 18ß-glycyrrhetinic acid (18ßGA) from licorice in a lipopolysaccharide (LPS)-stimulated macrophage model. The results showed that treatment with 25-75 µM GA or 18ßGA did not reduce RAW 264.7 cell viability but did significantly inhibit the production of LPS-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and intracellular reactive oxygen species (ROS). Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that GA and 18ßGA significantly reduced the protein and mRNA levels of iNOS and COX-2 in LPS-induced macrophages. Both GA and 18ßGA inhibited the activation of NF-κB and the activities of phosphoinositide-3-kinase (PI3K) p110δ and p110γ isoforms and then reduced the production of LPS-induced tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in a dose-dependent manner. In conclusion, these results indicate that GA and 18ßGA may provide an anti-inflammatory effect by attenuating the generation of excessive NO, PGE(2), and ROS and by suppressing the expression of pro-inflammatory genes through the inhibition of NF-κB and PI3K activity. Thus, the results suggest that GA and 18ßGA might serve as potential agents for the treatment of inflammatory-mediated diseases.
Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Regulación hacia Abajo/efectos de los fármacos , Ácido Glicirrínico/farmacología , Inflamación/inmunología , Lipopolisacáridos/inmunología , FN-kappa B/inmunología , Extractos Vegetales/farmacología , Animales , Línea Celular , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/inmunología , Ácido Glicirretínico/farmacología , Glycyrrhiza/química , Ácido Glicirrínico/análogos & derivados , Ácido Glicirrínico/inmunología , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Extractos Vegetales/inmunología , Transducción de Señal/efectos de los fármacosRESUMEN
Natural killer (NK) cells kill tumor cells and virally infected cells, and an effective NK cell response requires processes, such as motility, recognition, and directional secretion, that rely on cytoskeletal rearrangement. The Rho guanosine triphosphatase (GTPase) Cdc42 coordinates cytoskeletal reorganization downstream of many receptors. The Rho-related GTPase from plants 1 (ROP1) exhibits oscillatory activation behavior at the apical plasma membrane of growing pollen tubes; however, a similar oscillation in Rho GTPase activity has so far not been demonstrated in mammalian cells. We hypothesized that oscillations in Cdc42 activity might occur within NK cells as they interact with target cells. Through fluorescence lifetime imaging of a Cdc42 biosensor, we observed that in live NK cells forming immunological synapses with target cells, Cdc42 activity oscillated after exhibiting an initial increase. We used protein-protein interaction networks and structural databases to identify candidate proteins that controlled Cdc42 activity, leading to the design of a targeted short interfering RNA screen. The guanine nucleotide exchange factors RhoGEF6 and RhoGEF7 were necessary for Cdc42 activation within the NK cell immunological synapse. In addition, the kinase Akt and the p85α subunit of phosphoinositide 3-kinase (PI3K) were required for Cdc42 activation, the periodicity of the oscillation in Cdc42 activity, and the subsequent polarization of cytotoxic vesicles toward target cells. Given that PI3Ks are targets of tumor therapies, our findings suggest the need to monitor innate immune function during the course of targeted therapy against these enzymes.