Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(22): 5527-5540.e18, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644527

RESUMEN

To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.


Asunto(s)
Redes Reguladoras de Genes , Micorrizas/genética , Micorrizas/fisiología , Fosfatos/deficiencia , Simbiosis/genética , Simbiosis/fisiología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oryza/genética , Oryza/microbiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
2.
Nature ; 617(7962): 798-806, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138087

RESUMEN

Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.


Asunto(s)
Drosophila melanogaster , Homeostasis , Orgánulos , Fosfatos , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Orgánulos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Proteómica , Transferencia Resonante de Energía de Fluorescencia , Lipidómica , Citosol/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo
3.
Plant Cell ; 36(6): 2176-2200, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38345432

RESUMEN

Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente , Estudio de Asociación del Genoma Completo
4.
J Biol Chem ; 300(3): 105718, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311173

RESUMEN

Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.


Asunto(s)
Proteínas de Unión al ADN , Longevidad , Fosfatos , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Factores de Transcripción , Regulación Fúngica de la Expresión Génica , Longevidad/genética , Fosfatos/deficiencia , ARN de Transferencia/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcriptoma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant J ; 120(1): 218-233, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39164918

RESUMEN

Alternative transcription start sites (TSS) are widespread in eukaryotes and can alter the 5' UTR length and coding potential of transcripts. Here we show that inorganic phosphate (Pi) availability regulates the usage of several alternative TSS in Arabidopsis (Arabidopsis thaliana). In comparison to phytohormone treatment, Pi had a pronounced and specific effect on the usage of many alternative TSS. By combining short-read RNA sequencing with long-read sequencing of full-length mRNAs, we identified a set of 45 genes showing alternative TSS under Pi deficiency. Alternative TSS affected several processes, such as translation via the exclusion of upstream open reading frames present in the 5' UTR of RETICULAN LIKE PROTEIN B1 mRNA, and subcellular localization via removal of the plastid transit peptide coding region from the mRNAs of HEME OXYGENASE 1 and SULFOQUINOVOSYLDIACYLGLYCEROL 2. Several alternative TSS also generated shorter transcripts lacking the coding potential for important domains. For example, the EVOLUTIONARILY CONSERVED C-TERMINAL REGION 4 (ECT4) locus, which encodes an N6-methyladenosine (m6A) reader, strongly expressed under Pi deficiency a short noncoding transcript (named ALTECT4) ~550 nt long with a TSS in the penultimate intron. The specific and robust induction of ALTECT4 production by Pi deficiency led to the identification of a role for m6A readers in primary root growth in response to low phosphate that is dependent on iron and is involved in modulating cell division in the root meristem. Our results identify alternative TSS usage as an important process in the plant response to Pi deficiency.


Asunto(s)
Regiones no Traducidas 5' , Arabidopsis , Fosfatos , Sitio de Iniciación de la Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Regiones no Traducidas 5'/genética , Regulación de la Expresión Génica de las Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Plant J ; 119(2): 828-843, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804074

RESUMEN

Plants have evolved finely regulated defense systems to counter biotic and abiotic threats. In the natural environment, plants are typically challenged by simultaneous stresses and, amid such conditions, crosstalk between the activated signaling pathways becomes evident, ultimately altering the outcome of the defense response. As an example of combined biotic and abiotic stresses, inorganic phosphate (Pi) deficiency, common in natural and agricultural environments, can occur along with attack by the fungus Botrytis cinerea, a devastating necrotrophic generalist pathogen responsible for massive crop losses. We report that Pi deficiency in Arabidopsis thaliana increases its susceptibility to infection by B. cinerea by influencing the early stages of pathogen infection, namely spore adhesion and germination on the leaf surface. Remarkably, Pi-deficient plants are more susceptible to B. cinerea despite displaying the appropriate activation of the jasmonic acid and ethylene signaling pathways, as well as producing secondary defense metabolites and reactive oxygen species. Conversely, the callose deposition in response to B. cinerea infection is compromised under Pi-deficient conditions. The levels of abscisic acid (ABA) are increased in Pi-deficient plants, and the heightened susceptibility to B. cinerea observed under Pi deficiency can be reverted by blocking ABA biosynthesis. Furthermore, high level of leaf ABA induced by overexpression of NCED6 in Pi-sufficient plants also resulted in greater susceptibility to B. cinerea infection associated with increased spore adhesion and germination, and reduced callose deposition. Our findings reveal a link between the enhanced accumulation of ABA induced by Pi deficiency and an increased sensitivity to B. cinerea infection.


Asunto(s)
Ácido Abscísico , Arabidopsis , Botrytis , Fosfatos , Enfermedades de las Plantas , Transducción de Señal , Botrytis/fisiología , Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fosfatos/metabolismo , Fosfatos/deficiencia , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Etilenos/metabolismo , Ciclopentanos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Oxilipinas/metabolismo , Esporas Fúngicas/fisiología , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Susceptibilidad a Enfermedades
7.
Plant Physiol ; 196(1): 385-396, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701198

RESUMEN

The concentration of inorganic phosphate (Pi) in the chloroplast stroma must be maintained within narrow limits to sustain photosynthesis and to direct the partitioning of fixed carbon. However, it is unknown if these limits or the underlying contributions of different chloroplastic Pi transporters vary throughout the photoperiod or between chloroplasts in different leaf tissues. To address these questions, we applied live Pi imaging to Arabidopsis (Arabidopsis thaliana) wild-type plants and 2 loss-of-function transporter mutants: triose phosphate/phosphate translocator (tpt), phosphate transporter 2;1 (pht2;1), and tpt pht2;1. Our analyses revealed that stromal Pi varies spatially and temporally, and that TPT and PHT2;1 contribute to Pi import with overlapping tissue specificities. Further, the series of progressively diminished steady-state stromal Pi levels in these mutants provided the means to examine the effects of Pi on photosynthetic efficiency without imposing nutritional deprivation. ΦPSII and nonphotochemical quenching (NPQ) correlated with stromal Pi levels. However, the proton efflux activity of the ATP synthase (gH+) and the thylakoid proton motive force (pmf) were unaltered under growth conditions, but were suppressed transiently after a dark to light transition with return to wild-type levels within 2 min. These results argue against a simple substrate-level limitation of ATP synthase by depletion of stromal Pi, favoring more integrated regulatory models, which include rapid acclimation of thylakoid ATP synthase activity to reduced Pi levels.


Asunto(s)
Arabidopsis , Cloroplastos , Fosfatos , Fotosíntesis , Fosfatos/metabolismo , Fosfatos/deficiencia , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Tilacoides/metabolismo
8.
FASEB J ; 38(18): e70025, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39279493

RESUMEN

Extracellular hydrolysis of the phosphate esters of B vitamins (B1, B2, and B6) is crucial for their cellular uptake and metabolism. Although a few zinc-dependent enzymes have been implicated in these processes, their exact mechanisms of action remain largely unknown. This study investigated the potential involvement of phosphate group hydrolyzing enzymes in the hydrolysis of B vitamin phosphate esters. We evaluated enzyme activity in membrane lysates prepared from cells transiently transfected with these enzymes or those endogenously expressing them. Specifically, we investigated how zinc deficiency affects the rate of hydrolysis of B vitamin phosphate esters in cellular lysates. Assessment of the activities of zinc-dependent ectoenzymes in the lysates prepared from cells cultured in zinc-deficient conditions and in the serum of rats fed zinc-deficient diets revealed that zinc deficiency reduced the extracellular hydrolysis activity of B vitamin phosphate esters. Furthermore, our findings explain the similarities between several symptoms of B vitamin and zinc deficiencies. Collectively, this study provides novel insights into the diverse symptoms of zinc deficiency and could guide the development of appropriate clinical strategies.


Asunto(s)
Ésteres , Zinc , Animales , Zinc/metabolismo , Zinc/deficiencia , Ratas , Hidrólisis , Ésteres/metabolismo , Humanos , Masculino , Complejo Vitamínico B/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiencia , Vitamina B 6/metabolismo , Ratas Wistar
9.
Planta ; 259(6): 144, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709333

RESUMEN

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Asunto(s)
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estrés Oxidativo , Fosfatos , Fotosíntesis , Raíces de Plantas , Silicio , Hordeum/metabolismo , Hordeum/genética , Hordeum/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Silicio/farmacología , Silicio/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Plantones/efectos de los fármacos , Plantones/fisiología
10.
J Exp Bot ; 75(16): 5054-5075, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753441

RESUMEN

Phosphorus nutrition has been known for a long time to influence floral transition in plants, but the underlying mechanism is unclear. Arabidopsis phosphate transporter PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long- and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is a result of impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of the phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find that rice PHO1;2, the homolog of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time, and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Proteínas de Transporte de Fosfato , Fosfatos , Raíces de Plantas , Brotes de la Planta , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos/metabolismo , Fosfatos/deficiencia , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Transporte Biológico
11.
Plant Cell ; 33(3): 766-780, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955494

RESUMEN

Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfolipasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfatos/deficiencia , Fosfolipasas/genética
12.
Physiol Plant ; 176(3): e14396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887929

RESUMEN

Phosphorus (P) is a crucial macronutrient required for normal plant growth. Its effective uptake from the soil is a trait of agronomic importance. Natural variation in maize (339 accessions) root traits, namely root length and number of primary, seminal, and crown roots, root and shoot phosphate (Pi) contents, and root-to-shoot Pi translocation (root: shoot Pi) under normal (control, 40 ppm) and low phosphate (LP, 1 ppm) conditions, were used for genome-wide association studies (GWAS). The Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model of GWAS provided 23 single nucleotide polymorphisms (SNPs) and 12 relevant candidate genes putatively linked with root Pi, root: shoot Pi, and crown root number (CRN) under LP. The DNA-protein interaction analysis of Zm00001d002842, Zm00001d002837, Zm00001d002843 for root Pi, and Zm00001d044312, Zm00001d045550, Zm00001d025915, Zm00001d044313, Zm00001d051842 for root: shoot Pi, and Zm00001d031561, Zm00001d001803, and Zm00001d001804 for CRN showed the presence of potential binding sites of key transcription factors like MYB62, bZIP11, ARF4, ARF7, ARF10 and ARF16 known for induction/suppression of phosphate starvation response (PHR). The in-silico RNA-seq analysis revealed up or down-regulation of candidate genes along with key transcription factors of PHR, while Uniprot analysis provided genetic relatedness. Candidate genes that may play a role in P uptake and root-to-shoot Pi translocation under LP are proposed using common PHR signaling components like MYB62, ARF4, ARF7, ARF10, ARF16, and bZIP11 to induce changes in root growth in maize. Candidate genes may be used to improve low P tolerance in maize using the CRISPR strategy.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fosfatos , Raíces de Plantas , Polimorfismo de Nucleótido Simple , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Fosfatos/metabolismo , Fosfatos/deficiencia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Desequilibrio de Ligamiento/genética
13.
Cell Mol Biol Lett ; 29(1): 85, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834954

RESUMEN

The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.


Asunto(s)
Autofagia , Fosfatos , Proteínas de Saccharomyces cerevisiae , Fosfatos/metabolismo , Fosfatos/deficiencia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Peroxisomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas
14.
J Plant Res ; 137(3): 343-357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693461

RESUMEN

Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.


Asunto(s)
Fosfatos , Inmunidad de la Planta , Fosfatos/deficiencia , Fosfatos/metabolismo , Plantas/inmunología , Plantas/microbiología , Plantas/metabolismo , Transducción de Señal
15.
Plant J ; 107(2): 525-543, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33960526

RESUMEN

Though root architecture modifications may be critically important for improving phosphorus (P) efficiency in crops, the regulatory mechanisms triggering these changes remain unclear. In this study, we demonstrate that genotypic variation in GmEXPB2 expression is strongly correlated with root elongation and P acquisition efficiency, and enhancing its transcription significantly improves soybean yield in the field. Promoter deletion analysis was performed using 5' truncation fragments (P1-P6) of GmEXPB2 fused with the GUS gene in soybean transgenic hairy roots, which revealed that the P1 segment containing three E-box elements significantly enhances induction of gene expression in response to phosphate (Pi) starvation. Further experimentation demonstrated that GmPTF1, a basic-helix-loop-helix transcription factor, is the regulatory factor responsible for the induction of GmEXPB2 expression in response to Pi starvation. In short, Pi starvation induced expression of GmPTF1, with the GmPTF1 product directly binding to the E-box motif in the P1 region of the GmEXPB2 promoter. Plus, both GmPTF1 and GmEXPB2 highly expressed in lateral roots, and were significantly enhanced by P deficiency. Further work with soybean stable transgenic plants through RNA sequencing analysis showed that altering GmPTF1 expression significantly impacted the transcription of a series of cell wall genes, including GmEXPB2, and thereby affected root growth, biomass and P uptake. Taken together, this work identifies a novel regulatory factor, GmPTF1, involved in changing soybean root architecture partially through regulation of the expression of GmEXPB2 by binding the E-box motif in its promoter region.


Asunto(s)
Glycine max/metabolismo , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/anatomía & histología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Glycine max/genética , Estrés Fisiológico
16.
Plant J ; 108(5): 1422-1438, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34587329

RESUMEN

Phosphorus (P) deficiency adversely affects nodule development as reflected by reduced nodule fresh weight in legume plants. Though mechanisms underlying nodule adaptation to P deficiency have been studied extensively, it remains largely unknown which regulator mediates nodule adaptation to P deficiency. In this study, GUS staining and quantitative reverse transcription-PCR analysis reveal that the SPX member GmSPX5 is preferentially expressed in soybean (Glycine max) nodules. Overexpression of GmSPX5 enhanced soybean nodule development particularly under phosphate (Pi) sufficient conditions. However, the Pi concentration was not affected in soybean tissues (i.e., leaves, roots, and nodules) of GmSPX5 overexpression or suppression lines, which distinguished it from other well-known SPX members functioning in control of Pi homeostasis in plants. Furthermore, GmSPX5 was observed to interact with the transcription factor GmNF-YC4 in vivo and in vitro. Overexpression of either GmSPX5 or GmNF-YC4 significantly upregulated the expression levels of five asparagine synthetase-related genes (i.e., GmASL2-6) in soybean nodules. Meanwhile, yeast one-hybrid and luciferase activity assays strongly suggested that interactions of GmSPX5 and GmNF-YC4 activate GmASL6 expression through enhancing GmNF-YC4 binding of the GmASL6 promoter. These results not only demonstrate the GmSPX5-GmNF-YC4-GmASL6 regulatory pathway mediating soybean nodule development, but also considerably improve our understanding of SPX functions in legume crops.


Asunto(s)
Glycine max/genética , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Adaptación Fisiológica , Homeostasis , Fósforo/deficiencia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Glycine max/crecimiento & desarrollo , Glycine max/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34855067

RESUMEN

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Reguladores del Crecimiento de las Plantas/fisiología , Cápsula de Raíz de Planta/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Cápsula de Raíz de Planta/citología , Cápsula de Raíz de Planta/metabolismo , Transducción de Señal
18.
Gastroenterology ; 161(3): 982-995.e2, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34051238

RESUMEN

BACKGROUND & AIMS: Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. METHODS: Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. RESULTS: LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. CONCLUSIONS: Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.


Asunto(s)
Metabolismo Energético , Hipofosfatemia/complicaciones , Mitocondrias/metabolismo , Páncreas/metabolismo , Pancreatitis Alcohólica/metabolismo , Fosfatos/deficiencia , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Etanol , Hipofosfatemia/metabolismo , Hipofosfatemia/prevención & control , Masculino , Ratones Endogámicos C57BL , Mitocondrias/patología , Páncreas/patología , Pancreatitis Alcohólica/inducido químicamente , Pancreatitis Alcohólica/patología , Pancreatitis Alcohólica/prevención & control , Fosfatos/administración & dosificación , Índice de Severidad de la Enfermedad , Técnicas de Cultivo de Tejidos
19.
BMC Plant Biol ; 22(1): 26, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016604

RESUMEN

BACKGROUND: Chilling temperature reduces the rate of photosynthesis in plants, which is more pronounced in association with phosphate (Pi) starvation. Previous studies showed that Pi resupply improves recovery of the rate of photosynthesis in plants much better under combination of dual stresses than in non-chilled samples. However, the underlying mechanism remains poorly understood. RESULTS: In this study, RNA-seq analysis showed the expression level of 41 photosynthetic genes in plant roots increased under phosphate starvation associated with 4 °C (-P 4 °C) compared to -P 23 °C. Moreover, iron uptake increased significantly in the stem cell niche (SCN) of wild type (WT) roots in -P 4 °C. In contrast, lower iron concentrations were found in SCN of aluminum activated malate transporter 1 (almt1) and its transcription factor, sensitive to protein rhizotoxicity 1 (stop1) mutants under -P 4 °C. The Fe content examined by ICP-MS analysis in -P 4 °C treated almt1 was 98.5 ng/µg, which was only 17% of that of seedlings grown under -P 23 °C. Average plastid number in almt1 root cells under -P 4 °C was less than -P 23 °C. Furthermore, stop1 and almt1 single mutants both exhibited increased primary root elongation than WT under combined stresses. In addition, dark treatment blocked the root elongation phenotype of stop1 and almt1. CONCLUSIONS: Induction of photosynthetic gene expression and increased iron accumulation in roots is required for plant adjustment to chilling in association with phosphate starvation.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Fosfatos/deficiencia , Fosfatos/metabolismo , Adaptación Fisiológica/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
20.
Plant Physiol ; 185(2): 318-330, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721901

RESUMEN

Inorganic phosphate (Pi) and nitrogen (N) are essential nutrients for plant growth. We found that a five-fold oversupply of nitrate rescues Arabidopsis (Arabidopsis thaliana) plants from Pi-starvation stress. Analyses of transgenic plants that overexpressed GFP-AUTOPHAGY8 showed that an oversupply of nitrate induced autophagy flux under Pi-depleted conditions. Expression of DIN6 and DIN10, the carbon (C) starvation-responsive genes, was upregulated when nitrate was oversupplied under Pi starvation, which suggested that the plants recognized the oversupply of nitrate as C starvation stress because of the reduction in the C/N ratio. Indeed, formation of Rubisco-containing bodies (RCBs), which contain chloroplast stroma and are induced by C starvation, was enhanced when nitrate was oversupplied under Pi starvation. Moreover, autophagy-deficient mutants did not release Pi (unlike wild-type plants), exhibited no RCB accumulation inside vacuoles, and were hypersensitive to Pi starvation, indicating that RCB-mediated chlorophagy is involved in Pi starvation tolerance. Thus, our results showed that the Arabidopsis response to Pi starvation is closely linked with N and C availability and that autophagy is a key factor that controls plant growth under Pi starvation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Carbono/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Fosfatos/deficiencia , Ribulosa-Bifosfato Carboxilasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Autofagia , Carbono/deficiencia , Cloroplastos/fisiología , Microautofagia , Mutación , Plantas Modificadas Genéticamente , Ribulosa-Bifosfato Carboxilasa/genética , Estrés Fisiológico , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA