Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 38(42): 8976-8988, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185461

RESUMEN

Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (IMI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.


Asunto(s)
Potenciales de Acción/fisiología , Generadores de Patrones Centrales/fisiología , Ganglios de Invertebrados/fisiología , Neurotransmisores/fisiología , Transmisión Sináptica , Animales , Braquiuros , Generadores de Patrones Centrales/efectos de los fármacos , Ganglios de Invertebrados/diagnóstico por imagen , Masculino , Agonistas Muscarínicos/administración & dosificación , Neuropéptidos/administración & dosificación , Neuropéptidos/fisiología , Neurotransmisores/administración & dosificación , Oligopéptidos/administración & dosificación , Oligopéptidos/fisiología , Oxotremorina/administración & dosificación , Píloro/fisiología , Ácido Pirrolidona Carboxílico/administración & dosificación , Ácido Pirrolidona Carboxílico/análogos & derivados , Bloqueadores de los Canales de Sodio/administración & dosificación , Tetrodotoxina/administración & dosificación
2.
Neuroimage ; 161: 104-119, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28818695

RESUMEN

We describe a sequence of experiments performed in vitro to verify the existence of a new magnetic resonance imaging contrast - Magnetic Resonance Electrical Impedance Tomography (MREIT) -sensitive to changes in active membrane conductivity. We compared standard deviations in MREIT phase data from spontaneously active Aplysia abdominal ganglia in an artificial seawater background solution (ASW) with those found after treatment with an excitotoxic solution (KCl). We found significant increases in MREIT treatment cases, compared to control ganglia subject to extra ASW. This distinction was not found in phase images from the same ganglia using no imaging current. Further, significance and effect size depended on the amplitude of MREIT imaging current used. We conclude that our observations were linked to changes in cell conductivity caused by activity. Functional MREIT may have promise as a more direct method of functional neuroimaging than existing methods that image correlates of blood flow such as BOLD fMRI.


Asunto(s)
Potenciales de Acción/fisiología , Impedancia Eléctrica , Ganglios de Invertebrados/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Aplysia , Butiratos/farmacología , Ganglios de Invertebrados/efectos de los fármacos , Hidrocarburos Fluorados/farmacología , Técnicas In Vitro , Neuronas/efectos de los fármacos , Neurotoxinas/farmacología
3.
Sheng Li Xue Bao ; 69(4): 461-466, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28825105

RESUMEN

Improvements in the imaging of neural circuits are essential for studies of network function in both invertebrates and vertebrates. Therefore, CLARITY, a new imaging enhancement technique developed for mouse brains has attracted broad interest from researchers working on other species. We studied the potential of a modified version of CLARITY to enhance the imaging of ganglia in an invertebrate Aplysia. For example, we have modified the hydrogel solution and designed a small container for the Aplysia ganglia. The ganglia were first processed for immunohistochemistry, and then for CLARITY. We examined the compatibility of these techniques and the extent to which the imaging of fluorescence improved using confocal microscopy. We found that CLARITY did indeed enhance the imaging of CP2 immunopositive neurons in Aplysia ganglia. For example, it improved visualization of small, weak immunoreactive neurons deep in the ganglia. Our modifications of CLARITY make this new method suitable for future use in Aplysia experiments. Furthermore, our techniques are likely to facilitate imaging in other invertebrate ganglia.


Asunto(s)
Aplysia/anatomía & histología , Ganglios de Invertebrados/diagnóstico por imagen , Aumento de la Imagen/métodos , Animales , Inmunohistoquímica , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA