Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 212, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273212

RESUMEN

BACKGROUND: Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.


Asunto(s)
Arecaceae , Ganoderma , Micotoxinas , Arecaceae/genética , Arecaceae/metabolismo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Ganoderma/genética , Micotoxinas/metabolismo
2.
World J Microbiol Biotechnol ; 40(2): 69, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225505

RESUMEN

Ganoderma capense is a precious medicinal fungus in China. In this study, a novel fungal immunomodulatory protein gene, named as FIP-gca, was cloned from G. capense by homologous cloning. Sequencing analysis indicated that FIP-gca was composed of 336 bp, which encoded a polypeptide of 110 amino acids. Protein sequence blasting and phylogenetic analysis showed that FIP-gca shared homology with other Ganoderma FIPs. FIP-gca was effectively expressed in Pichia pastoris GS115 at an expression level of 166.8 mg/L and purified using HisTrap™ fast-flow prepack columns. The immunomodulation capacity of rFIP-gca was demonstrated by that rFIP-gca could obviously stimulate cell proliferation and increase IL-2 secretion of murine spleen lymphocytes. Besides, antitumor activity of rFIP-gca towards human stomach cancer AGS cell line was evaluated in vitro. Cell wound scratch assay proved that rFIP-gca could inhibit migration of AGS cells. And flow cytometry assay revealed that rFIP-gca could significantly induce apoptosis of AGS cells. rFIP-gca was able to induce 18.12% and 22.29% cell apoptosis at 0.3 µM and 0.6 µM, respectively. Conclusively, the novel FIP-gca gene from G. capense has been functionally expressed in Pichia and rFIP-gca exhibited ideal immunomodulation and anti-tumour activities, which implies its potential application and study in future.


Asunto(s)
Ganoderma , Saccharomycetales , Animales , Ratones , Humanos , Filogenia , Ganoderma/genética , Ganoderma/química , Pichia/genética , Pichia/metabolismo , Proteínas Fúngicas/metabolismo
3.
Fungal Genet Biol ; 167: 103796, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146899

RESUMEN

Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.


Asunto(s)
Ganoderma , Termotolerancia , Termotolerancia/genética , Proteómica , Respuesta al Choque Térmico/genética , Ganoderma/genética
4.
Mol Biol Rep ; 50(3): 2367-2379, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36580194

RESUMEN

BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today. METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm. CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.


Asunto(s)
Ganoderma , Arecaceae/genética , Arecaceae/metabolismo , ADN Complementario/genética , ADN Complementario/metabolismo , Ganoderma/genética , Lanosterol/metabolismo , Enfermedades de las Plantas/microbiología
5.
Plant Dis ; 107(3): 682-687, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35869585

RESUMEN

Ganoderma butt rot of palms is caused by a white rot basidiomycete fungus, Ganoderma zonatum. Typical symptoms include wilting of fronds that starts in the lower canopy and moves to the top. As wilting symptoms are also associated with other diseases and disorders, appearance of basidiomata on the trunks is necessary to confirm this disease. Basidiomata develop late in the disease cycle, making early diagnostics challenging. Here, we describe a DNA-based molecular diagnostic assay that could be used to confirm the presence of G. zonatum in palm trunks before conks are observed. Primers tailored to end on single-nucleotide polymorphisms (SNPs), that differentiate G. zonatum from 14 other Ganoderma taxa, were designed from multiple regions in four genes: internal transcribed spacer (ITS), RNA polymerase 1 (rpb1), rpb2, and translation elongation factor 1-α (tef1-α). A set of three primer pairs could successfully determine the incidence of G. zonatum with high specificity and sensitivity in different environmental samples such as sawdust collected from naturally infected palm trunks and soil samples containing G. zonatum basidiospores. This rapid PCR-based assay could potentially be used to detect inoculum sources of the fungus and track its movement and survival in different palm tissues and environments. Early detection of G. zonatum is a crucial step toward building and implementing better disease management strategies and mitigating potential risks from palm failures due to decay.


Asunto(s)
Arecaceae , Ganoderma , Ganoderma/genética , Arecaceae/microbiología , Reacción en Cadena de la Polimerasa , Madera
6.
BMC Genomics ; 22(1): 326, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952202

RESUMEN

BACKGROUND: The white-rot fungi in the genus Ganoderma interact with both living and dead angiosperm tree hosts. Two Ganoderma species, a North American taxon, G. zonatum and an Asian taxon, G. boninense, have primarily been found associated with live palm hosts. During the host plant colonization process, a massive transcriptional reorganization helps the fungus evade the host immune response and utilize plant cell wall polysaccharides. RESULTS: A publicly available transcriptome of G. boninense - oil palm interaction was surveyed to profile transcripts that were differentially expressed in planta. Ten percent of the G. boninense transcript loci had altered expression as it colonized oil palm plants one-month post inoculation. Carbohydrate active enzymes (CAZymes), particularly those with a role in lignin degradation, and auxiliary enzymes that facilitate lignin modification, like cytochrome P450s and haloacid dehalogenases, were up-regulated in planta. Several lineage specific proteins and secreted proteins that lack known functional domains were also up-regulated in planta, but their role in the interaction could not be established. A slowdown in G. boninense respiration during the interaction can be inferred from the down-regulation of proteins involved in electron transport chain and mitochondrial biogenesis. Additionally, pathogenicity related genes and chitin degradation machinery were down-regulated during the interaction indicating G. boninense may be evading detection by the host immune system. CONCLUSIONS: This analysis offers an overview of the dynamic processes at play in G. boninense - oil palm interaction and provides a framework to investigate biology of Ganoderma fungi across plantations and landscape.


Asunto(s)
Arecaceae , Ganoderma , Arecaceae/genética , Ganoderma/genética , Inmunidad , Lignina , Aceite de Palma , Enfermedades de las Plantas/genética
7.
Arch Microbiol ; 204(1): 31, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34923595

RESUMEN

The fungus Ganoderma boninense is a causal pathogen of basal stem rot, a serious disease of oil palm plantation systems. As previously observed, some oil palm trees show no appearance of disease symptoms (asymptomatic oil palm), although they have grown close to a tree that showed severe symptoms of basal stem rot disease (symptomatic oil palm). The microbial community difference between asymptomatic and symptomatic oil palm will help understand disease suppression. Thus, in this study, rhizosphere soil was sampled around asymptomatic (OP - G) and symptomatic (OP + G) oil palm trees in Ganoderma-infected oil palm orchards. Illumina next-generation sequencing (NGS), bioinformatics analysis, bacterial diversity, and soil physicochemical properties were evaluated. The results demonstrated that soil physicochemical properties and species richness around rhizosphere soil of OP - G and OP + G samples were not significantly different. The age of the oil palm trees and oil palm variety showed negligible correlation and were not significant with bacterial diversity. However, the top ten most abundant analysis of the bacterial communities showed that phyla Actinobacteria and Firmicutes were significantly increased in rhizosphere soil around OP - G samples relative to the OP+ G samples. The unique operational taxonomic units (OTUs) of OP - G (2137) were higher than in the OP+ G samples (1747 OTUs). These bacterial communities have been reported as biological control agents and/or plant growth-promoting rhizosphere bacteria that are related to disease suppression. Thus, the data provided are useful for developing suppressive soil to biologically control G. boninense.


Asunto(s)
Biología Computacional , Ganoderma , Ganoderma/genética , Secuenciación de Nucleótidos de Alto Rendimiento
8.
Genomics ; 112(1): 930-933, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175979

RESUMEN

The Ganoderma genus represents clear biotechnological potential, due to the large quantity of molecules with biological activity that could be explored. However, available information regarding the biotechnological importance of species within Ganoderma, other than G. lucidum, is quite limited. Genomic studies of little-known species can contribute to the knowledge thereof, as well as the search for metabolic pathways and the identification of genes which code for proteins that may be of biotechnological relevance. Therefore, the objective of the present study was to obtain the G. australe genome, through the use of new sequencing technologies. Genomic DNA from G. australe was sequenced with the PacBio Sequel system, to a depth of 100×. The genome was assembled de novo with the Canu assembly tool, and gene prediction and annotation were performed with a funannotate pipeline. An assembled 84 Mb genome was obtained, and 22,756 putative protein-coding sequences were predicted in the G. australe genome. Ganoderic acid pathways were annotated and listed in the funannotate pipeline, and were recognized using Pfam and Antismash signals. Thus, the G. australe genome shows great potential, mainly, due to the annotation of putative sequences that could be employed in biotechnological approaches.


Asunto(s)
Ganoderma/genética , Genoma Fúngico , Proteínas Fúngicas/genética , Ganoderma/clasificación , Ganoderma/metabolismo , Genómica , Anotación de Secuencia Molecular , Filogenia , Triterpenos/metabolismo
9.
BMC Biotechnol ; 18(1): 80, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547780

RESUMEN

BACKGROUND: More than a dozen of fungal immunomodulatory proteins (FIPs) have been identified to date, most of which are from Ganoderma species. However, little is known about the similarities and differences between different Ganoderma FIPs' bioactivities. In the current study, two FIP genes termed FIP-gap1 and FIP-gap2 from G. applanatum, along with LZ-8 and FIP-gsi, another two representative Ganoderma FIP genes from G. lucidum and G. sinense were functionally expressed in Pichia. Subsequently, bioactivities of four recombinant Ganoderma FIPs were demonstrated and compared. RESULTS: All the four Ganoderma FIP genes could be effectively expressed in P. pastoris GS115 at expression levels ranging from 197.5 to 264.3 mg L- 1 and simply purified by one step chromatography using HisTrap™ FF prepack columns. Amino acid sequence analysis showed that they all possessed the FIP conserved fragments. The homologies of different Ganoderma FIPs were from 72.6 to 86.4%. In vitro haemagglutination exhibited that FIP-gap1, FIP-gsi and LZ-8 could agglutinate human, sheep and mouse red blood cells but FIP-gap2 agglutinated none. Besides, the immunomodulation activities of these Ganoderma FIPs were as: rFIP-gap2 > rFIP-gap1 > rLZ-8 and rFIP-gsi in terms of proliferation stimulation and cytokine induction on murine splenocytes. Additionally, the cytotoxic activity of different FIPs was: rFIP-gap1 > rLZ-8 > rFIP-gsi > rFIP-gap2, examined by their inhibition of three human carcinomas A549, Hela and MCF-7. CONCLUSIONS: Taken together, four typical Ganoderma FIP genes could be functionally expressed in P. pastoris, which might supply as feasible efficient resources for further study and application. Both similarities and differences were indeed observed between Ganoderma FIPs in their amino acid sequences and bioactivities. Comprehensively, rFIP-gaps from G. applanatum proved to be more effective in immunomodulation and cytotoxic assays in vitro than rLZ-8 (G. lucidum) and rFIP-gsi (G. sinense).


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Ganoderma/genética , Expresión Génica , Factores Inmunológicos/genética , Factores Inmunológicos/farmacología , Secuencias de Aminoácidos , Animales , Línea Celular , Citocinas/genética , Citocinas/inmunología , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Pruebas de Hemaglutinación , Humanos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/metabolismo , Ratones , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Ovinos
10.
Appl Microbiol Biotechnol ; 102(13): 5483-5494, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29705959

RESUMEN

Fungal immunomodulatory proteins (FIPs) have been identified from a series of fungi, especially in Ganoderma species. However, little is known about the FIPs from G. applanatum. In this study, two novel FIP genes, termed as FIP-gap1 and FIP-gap2, were cloned from G. applanatum, characterized and functionally expressed after codon optimization in Pichia pastoris GS115. Results showed that FIP-gap1 and FIP-gap2 comprised 342-bp encoding peptides of 113 amino acids, which shared a high homology with other Ganoderma FIPs. The yield of recombinant FIP-gap1 and FIP-gap2 increased significantly after codon optimization and reached 247.4 and 197.5 mg/L, respectively. Bioactivity assay in vitro revealed that both rFIP-gap1 and rFIP-gap2 could agglutinate mouse, sheep, and human red blood cells. Besides, rFIP-gap1 and rFIP-gap2 obviously stimulated the proliferation of mouse splenocytes and enhanced IL-2 and IFN-γ release. Cytotoxicity detection indicated that IC50 of rFIP-gap1 towards A549 and HeLa cancer cells were 29.89 and 8.34 µg/mL, respectively, whereas IC50 of rFIP-gap2 to the same cancer cells were 60.92 and 41.05 µg/mL, respectively. Taken together, novel FIP gaps were cloned and functionally expressed in P. pastoris, which can serve as feasible and stable resources of rFIP gaps for further studies and potential applications.


Asunto(s)
Codón/genética , Ganoderma/genética , Regulación Fúngica de la Expresión Génica/genética , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Células A549 , Aglutinación/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Eritrocitos/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacología , Proteínas Fúngicas/toxicidad , Células HeLa , Humanos , Factores Inmunológicos/genética , Factores Inmunológicos/farmacología , Factores Inmunológicos/toxicidad , Ratones , Proteínas Recombinantes/toxicidad
11.
Biotechnol Lett ; 40(11-12): 1541-1550, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30203158

RESUMEN

The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of ~ 140 to 160 µg/g and ~ 80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.


Asunto(s)
Fraccionamiento Químico/métodos , ADN de Hongos/aislamiento & purificación , Ganoderma/genética , ARN de Hongos/aislamiento & purificación , ADN de Hongos/análisis , ADN de Hongos/química , Ganoderma/química , Micología/métodos , ARN de Hongos/análisis , ARN de Hongos/química
12.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415422

RESUMEN

In this study, a novel laccase gene (Lcc1) from Ganoderma tsugae was isolated and its functions were characterized in detail. The results showed that Lcc1 has the highest expression activity during mycelium development and fruit body maturation based on the analysis of Lcc1 RNA transcripts at different developmental stages of G. tsugae. To investigate the exact contribution of Lcc1 to mycelium and fruit body development in G. tsugae, Lcc1 transgenic strains were constructed by targeted gene replacement and over-expression approaches. The results showed that the lignin degradation rate in Lcc1 deletion mutant was much lower than the degradation efficiency of the wild-type (WT), over-expression and rescue strains. The lignin degradation activity of G. tsugae is dependent on Lcc1 and the deletion of Lcc1 exerted detrimental influences on the development of mycelium branch. Furthermore, the study uncovered that Lcc1 deletion mutants generated much shorter pale grey fruit bodies, suggesting that Lcc1 contributes directly to pigmentation and stipe elongation during fruit body development in G. tsugae. The information obtained in this study provides a novel and mechanistic insight into the specific role of Lcc1 during growth and development of G. tsugae.


Asunto(s)
Ganoderma/genética , Regulación Fúngica de la Expresión Génica , Lacasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Ganoderma/crecimiento & desarrollo , Ganoderma/ultraestructura , Lacasa/química , Lacasa/metabolismo , Modelos Moleculares , Mutación , Micelio/genética , Micelio/ultraestructura , Organismos Modificados Genéticamente , Fenotipo , Conformación Proteica , Análisis de Secuencia de ADN
13.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28802268

RESUMEN

Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.


Asunto(s)
Proteínas Fúngicas/metabolismo , Ganoderma/metabolismo , Ornitina Descarboxilasa/metabolismo , Putrescina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/metabolismo , Proteínas Fúngicas/genética , Ganoderma/enzimología , Ganoderma/genética , Ornitina Descarboxilasa/genética , Estrés Oxidativo
14.
Phytopathology ; 107(4): 483-490, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27918241

RESUMEN

A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 µm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.


Asunto(s)
Arecaceae/microbiología , Ganoderma/fisiología , Proteínas Fluorescentes Verdes , Enfermedades de las Plantas/microbiología , Agrobacterium , Ganoderma/citología , Ganoderma/genética , Genes Reporteros , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Micelio , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas/genética , Protoplastos , Plantones/microbiología , Esporas Fúngicas , Transformación Genética
15.
J Basic Microbiol ; 57(8): 705-711, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28543056

RESUMEN

Blue light plays an important role during the growth of Ganoderma lucidum, one of the best-known medicinal macrofungi in China. In the present study, we cloned Glwc-1 and Glwc-2, the homologue of the blue light photoreceptors Ncwc-1 and Ncwc-2 of Neurospora crassa, from G. lucidum. The deduced amino acid sequence of Glwc-1 contained the similar function domains as NcWC-1 including LOV, PAS B, PAS C, and PAC domains. The deduced amino acid sequence of Glwc-2 contained PAS domain and GATA-type zinc finger (Znf) domain as well as NcWC-2. Phylogenetic analysis based on fungal WC-1 and WC-2 supported GlWC-1 and GlWC-2 were blue light receptors. The expression of Glwc-1 and Glwc-2 indicated that they might play an important role during the primordium differentiation process of G. lucidum, and the external blue light stimulation increased the expression of Glwc-1 and Glwc-2.


Asunto(s)
Ganoderma/genética , Genes Fúngicos , Fotorreceptores Microbianos/genética , Sitios de Unión , Clonación Molecular , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Luz , Neurospora crassa/genética , Filogenia , Alineación de Secuencia , Factores de Transcripción/metabolismo , Dedos de Zinc
16.
Genet Mol Res ; 14(2): 5667-76, 2015 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26125765

RESUMEN

The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.


Asunto(s)
Ganoderma/genética , Marcadores Genéticos , Técnica del ADN Polimorfo Amplificado Aleatorio , Clonación Molecular , ADN/genética
17.
Genet Mol Res ; 14(1): 886-97, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25730027

RESUMEN

Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were clustered into a single group, the G. lucidum AF214475, G. sinense, G. strum G17, G. strum G36, and G. sinense G10 strains contained an intron and were clustered into other groups.


Asunto(s)
ADN Mitocondrial/genética , ADN Ribosómico/genética , Ganoderma/genética , Variación Genética , China , Ganoderma/clasificación , Humanos , Japón , Medicina Tradicional China , Filogenia , República de Corea
18.
Appl Microbiol Biotechnol ; 98(13): 5967-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24682474

RESUMEN

Fungal immunomodulatory protein (FIP), extracted from higher basidiomycetes, is a kind of small molecule protein with extensive biological functions, including anti-tumor and anti-allergy, stimulating immune cells to produce a variety of cytokines, etc. Compared with FIP-glu, FIP-SN15, a novel gene shuffled from the genes of Ganoderma sinensis and Ganoderma lucidum FIP, was used as the object in this study. Based on the construction of prokaryotic expression vectors, both pET30a-FIP-glu and pET30a-FIP-SN15 were expressed in Escherichia coli. Then the recombinant proteins are respectively analyzed by Western blot, Q-TOF MS, and bioinformatics techniques. Finally, effects of reFIPs on cell cycle and apoptosis of human glioblastoma cell line U-251 MG were studied by fluorescence activated cell sorting (FACS). The results showed that the recombinant proteins FIP-SN15 and FIP-glu could be successfully expressed in E. coli, the yield of which was 35.95 and 36.67 mg/L, respectively. The recombinant protein FIP-SN15 consisted of 111 amino acids, and four peptides were identified by Q-TOF MS with a coverage of 91.9 %. The secondary and tertiary structure of FIP-SN15 were also predicted by bioinformatics method which suggest that reFIP-SN15 was a new member of FIPs family. FACS analysis showed that 10 µg/mL FIP-SN15 and FIP-glu could induce U-251 MG cells apoptosis, the apoptotic rates were increased by 6.03 and 22.01 %, respectively. The results of reFIPs on U-251 MG cell cycle indicated that reFIPs could inhibit cell cycle progression by retardation of G1/S transition. The efforts in this assay would lay the foundation for further development of reFIPs products and research on the anti-tumor mechanisms of FIP-SN15.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis , Ciclo Celular/efectos de los fármacos , Línea Celular , Clonación Molecular , Barajamiento de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/farmacología , Ganoderma/genética , Expresión Génica , Humanos , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
19.
J Basic Microbiol ; 54(1): 44-55, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23553803

RESUMEN

A novel fungal strain JAS4 was isolated from agricultural soil and was found to be highly effective in degrading chlorpyrifos and its major degradation product 3,5,6-trichloro-2-pyridinol (TCP). The molecular characterization based on 18S rRNA sequence analysis, revealed strain JAS4 as Ganoderma sp. which could able to degrade chlorpyrifos and its metabolite in an aqueous medium with rate constant of 0.8460 day(-1), following first order rate kinetics, and the time in which the initial insecticide concentration was reduced by 50% (DT(50)) was 0.81 days. Studies on biodegradation in soil with nutrients showed that JAS4 strain exhibited efficient degradation of insecticide with a rate constant of 0.9 day(-1), and DT(50) was 0.73 day. In contrast, degradation of insecticide in soil without nutrients was characterized by a rate constant of 0.7576 day(-1) and the DT(50) was 0.91 day.


Asunto(s)
Cloropirifos/metabolismo , Ganoderma/aislamiento & purificación , Ganoderma/metabolismo , Insecticidas/metabolismo , Piridonas/metabolismo , Contaminantes del Suelo/metabolismo , Agricultura , Biodegradación Ambiental , Ganoderma/genética , ARN de Hongos/análisis , ARN Ribosómico 18S/análisis , Microbiología del Suelo
20.
Molecules ; 19(4): 4355-68, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24722589

RESUMEN

Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio/química , ADN de Hongos/análisis , Óxido Ferrosoférrico/química , Nanopartículas de Magnetita/química , Compuestos de Selenio/química , Sulfuros/química , Compuestos de Zinc/química , Ganoderma/genética , Nanotecnología , Puntos Cuánticos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA