Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(7998): 327-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109939

RESUMEN

The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.


Asunto(s)
Agricultura Forestal , Efecto Invernadero , Gases de Efecto Invernadero , Industrias , Internacionalidad , Papel , Desarrollo Sostenible , Madera , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/aislamiento & purificación , Industrias/legislación & jurisprudencia , Industrias/estadística & datos numéricos , Metano/análisis , Metano/aislamiento & purificación , Reciclaje/estadística & datos numéricos , Reciclaje/tendencias , Países Desarrollados , Países en Desarrollo , Bosques , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Desarrollo Sostenible/tendencias , Clima Tropical
3.
J Environ Sci (China) ; 76: 26-36, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30528017

RESUMEN

A number of mitigation techniques exist to reduce the emissions of pollutant gases and greenhouse gases (GHGs) from anaerobic storage of livestock manure. Nanoparticle (NP) application is a promising mitigating treatment option for pollutant gases, but limited research is available on the mode of NP application and their effectiveness in gaseous emission reduction. In this study, zinc silica nanogel (ZnSNL), copper silica nanogel (CuSNL), and N-acetyl cysteine (NACL) coated zinc oxide quantum dot (Qdot) NPs were compared to a control lacking NPs. All three NPs tested significantly reduced gas production and concentrations compared to non-treated manure. Overall, cumulative gas volumes were reduced by 92.73%-95.83%, and concentrations reduced by 48.98%-99.75% for H2S, and 20.24%-99.82% for GHGs. Thus, application of NPs is a potential treatment option for mitigating pollutant and GHG emissions from anaerobically stored manure.


Asunto(s)
Industria Lechera , Gases de Efecto Invernadero/química , Estiércol/análisis , Nanopartículas/química , Anaerobiosis , Animales , Gases de Efecto Invernadero/aislamiento & purificación , Estiércol/microbiología
4.
Chemosphere ; 221: 778-784, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30684775

RESUMEN

Technologies for controlling gaseous emissions of livestock is of interest to producers, the public, and regulatory agencies. In our previous lab-scale study, the use of a photocatalytic coating on surfaces subjected to black ultraviolet light reduced emissions of key odorant compounds relevant to the livestock industry. Thus, an on-farm pilot-scale experiment was conducted at a commercial swine barn to evaluate a photocatalytic coating on surfaces subjected to ultraviolet light under field conditions. A flow-through reactor was constructed with a TiO2-based photocatalytic coating on the interior surfaces and black ultraviolet light fixtures. The reactor was deployed in a room downstream of the entire swine barn exhaust. Gas samples were collected from three sampling ports in the reactor, one at the inlet (control), the midpoint (half treatment) and the outlet (treatment). Compared to the control, significant reductions in emissions were observed for p-cresol (22%), odor (16%) and nitrous oxide (9%). A significant increase in carbon dioxide (3%) was also measured. Results show that the TiO2-based photocatalytic coating and black UV light are effective in mitigating odor, a key VOC responsible for downwind swine odor, and one important greenhouse effect gas when subjected to swine barn exhaust.


Asunto(s)
Granjas , Gases de Efecto Invernadero/aislamiento & purificación , Odorantes/prevención & control , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/aislamiento & purificación , Animales , Catálisis , Ganado , Procesos Fotoquímicos , Proyectos Piloto , Porcinos
5.
N Biotechnol ; 46: 31-37, 2018 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29909071

RESUMEN

In order to limit ammonia (NH3) emissions from pig farms, various air cleaning solutions are widely applied. However, the literature data report that these systems (chemical scrubbers, bioscrubbers and biofilters) can be both inefficient and promote nitrous oxide (N2O) production. As air cleaning technologies should not contribute to secondary trace gases that may have a stronger environmental impact than the raw gas compounds themselves, the objective of this study was to quantify the effect of NH3 treatment in pig farms on greenhouse gas (GHG) emissions. GHGs (carbon dioxide, methane and nitrous oxide) emitted at the outlet of three different cleaning systems ("chemical scrubber", "bioscrubber" and "bioscrubber + denitrification step") were assessed and compared with the emissions generated by the exhaust air with "no treatment". The calculations show that the chemical scrubber has no effect whereas biological treatments can increase GHG emissions. The use of bioscrubbers alone for NH3 removal can remain acceptable provided that less than 3% of the NH3 entering the apparatus is converted into N2O. In such cases, a maximum increase of 1.9% in GHG emissions could be obtained. Conversely, the addition of a denitrification step to a bioscrubber must be avoided. Increases in overall GHG emissions of up to 25.8% were calculated but more significant increases could occur. With regard to GHG emissions, it is concluded that the use of a chemical scrubber is more suitable than a bioscrubber to treat exhaust air from pig farms.


Asunto(s)
Amoníaco/aislamiento & purificación , Dióxido de Carbono/aislamiento & purificación , Monitoreo del Ambiente , Granjas , Gases de Efecto Invernadero/aislamiento & purificación , Metano/aislamiento & purificación , Óxido Nitroso/aislamiento & purificación , Sus scrofa/metabolismo , Animales , Gases de Efecto Invernadero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA