Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007181

RESUMEN

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Asunto(s)
Canalopatías , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Humanos , Canal Catiónico TRPC6/metabolismo , Canalopatías/metabolismo , Canales Catiónicos TRPC/metabolismo , Glomérulos Renales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Enfermedades Renales/metabolismo
2.
J Biol Chem ; 300(8): 107516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960036

RESUMEN

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Integrina beta3 , Trombospondina 1 , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular , Doxorrubicina/farmacología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/genética , Integrina beta3/metabolismo , Integrina beta3/genética , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Noqueados , Transducción de Señal , Trombospondina 1/metabolismo , Trombospondina 1/genética
3.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916773

RESUMEN

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Asunto(s)
Forminas , Mitosis , Podocitos , Transcriptoma , Humanos , Mitosis/genética , Podocitos/metabolismo , Podocitos/patología , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Muerte Celular/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Mutación , Núcleo Celular/metabolismo , Núcleo Celular/genética , Línea Celular
4.
J Proteome Res ; 23(6): 2090-2099, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728052

RESUMEN

Idiopathic nephrotic syndrome (NS) is a heterogeneous group of glomerular disorders which includes two major phenotypes: minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). MCD and FSGS are classic types of primary podocytopathies. We aimed to explore the molecular mechanisms in NS triggered by primary podocytopathies and evaluate diagnostic value of the selected proteomic signatures by analyzing blood proteome profiling. Totally, we recruited 90 participants in two cohorts. The first cohort was analyzed using label-free quantitative (LFQ) proteomics to discover differential expressed proteins and identify enriched biological process in NS which were further studied in relation to clinical markers of kidney injury. The second cohort was analyzed using parallel reaction monitoring-based quantitative proteomics to verify the data of LFQ proteomics and assess the diagnostic performance of the selected proteins using receiver-operating characteristic curve analysis. Several biological processes (such as immune response, cell adhesion, and response to hypoxia) were found to be associated with kidney injury during MCD and FSGS. Moreover, three proteins (CSF1, APOC3, and LDLR) had over 90% sensitivity and specificity in detecting adult NS triggered by primary podocytopathies. The identified biological processes may play a crucial role in MCD and FSGS pathogenesis. The three blood protein markers are promising for diagnosing adult NS triggered by primary podocytopathies.


Asunto(s)
Biomarcadores , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Podocitos , Proteómica , Humanos , Síndrome Nefrótico/sangre , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/metabolismo , Proteómica/métodos , Adulto , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/patología , Femenino , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/metabolismo , Masculino , Podocitos/metabolismo , Podocitos/patología , Biomarcadores/sangre , Proteoma/análisis , Persona de Mediana Edad , Estudios de Cohortes , Curva ROC
5.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676361

RESUMEN

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Asunto(s)
Dexametasona , Fibrosis , Células Supresoras de Origen Mieloide , Animales , Dexametasona/farmacología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Masculino , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Ratones Endogámicos C57BL , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Traslado Adoptivo , Modelos Animales de Enfermedad , Regulación hacia Arriba/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-10/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855038

RESUMEN

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Persona de Mediana Edad , Humanos , Ratones , Animales , Anciano , Podocitos/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/metabolismo , Enfermedades Renales/metabolismo , Envejecimiento , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo
7.
Am J Physiol Renal Physiol ; 327(3): F463-F475, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991006

RESUMEN

Identifying effective drugs for focal segmental glomerulosclerosis (FSGS) treatment holds significant importance. Our high-content drug screening on zebrafish larvae relies on nitroreductase/metronidazole (NTR/MTZ)-induced podocyte ablation to generate FSGS-like injury. A crucial factor for successful drug screenings is minimizing variability in injury induction. For this, we introduce nifurpirinol (NFP) as a more reliable prodrug for targeted podocyte depletion. NFP showed a 2.3-fold increase in efficiency at concentrations 1,600-fold lower compared with MTZ-mediated injury induction. Integration into the screening workflow validated its suitability for the high-content drug screening. The presence of crucial FSGS hallmarks, such as podocyte foot process effacement, proteinuria, and activation of parietal epithelial cells, was observed. After the isolation of the glomeruli from the larvae, we identified essential pathways by proteomic analysis. This study shows that NFP serves as a highly effective prodrug to induce the FSGS-like disease in zebrafish larvae and is well-suited for a high-content drug screening to identify new candidates for the treatment of FSGS.NEW & NOTEWORTHY This research investigated the use of nifurpirinol in nanomolar amounts as a prodrug to reliably induce focal segmental glomerulosclerosis (FSGS)-like damage in transgenic zebrafish larvae. Through proteomic analysis of isolated zebrafish glomeruli, we were further able to identify proteins that are significantly regulated after the manifestation of FSGS. These results are expected to expand our knowledge of the pathomechanism of FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Larva , Podocitos , Pez Cebra , Animales , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/genética , Larva/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Modelos Animales de Enfermedad , Proteómica , Profármacos/farmacología , Nitrorreductasas/metabolismo , Nitrorreductasas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
8.
Kidney Int ; 106(1): 50-66, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697478

RESUMEN

Retinoic acid receptor responder protein-1 (RARRES1) is a podocyte-enriched transmembrane protein whose increased expression correlates with human glomerular disease progression. RARRES1 promotes podocytopenia and glomerulosclerosis via p53-mediated podocyte apoptosis. Importantly, the cytopathic actions of RARRES1 are entirely dependent on its proteolytic cleavage into a soluble protein (sRARRES1) and subsequent podocyte uptake by endocytosis, as a cleavage mutant RARRES1 exerted no effects in vitro or in vivo. As RARRES1 expression is upregulated in human glomerular diseases, here we investigated the functional consequence of podocyte-specific overexpression of RARRES1 in mice in the experimental focal segmental glomerulosclerosis and diabetic kidney disease. We also examined the effects of long-term RARRES1 overexpression on slowly developing aging-induced kidney injury. As anticipated, the induction of podocyte overexpression of RARRES1 (Pod-RARRES1WT) significantly worsened glomerular injuries and worsened kidney function in all three models, while overexpression of RARRES1 cleavage mutant (Pod-RARRES1MT) did not. Remarkably, direct uptake of sRARRES1 was also seen in proximal tubules of injured Pod-RARRES1WT mice and associated with exacerbated tubular injuries, vacuolation, and lipid accumulation. Single-cell RNA sequence analysis of mouse kidneys demonstrated RARRES1 led to a marked deregulation of lipid metabolism in proximal tubule subsets. We further identified matrix metalloproteinase 23 (MMP23) as a highly podocyte-specific metalloproteinase and responsible for RARRES1 cleavage in disease settings, as adeno-associated virus 9-mediated knockdown of MMP23 abrogated sRARRES1 uptake in tubular cells in vivo. Thus, our study delineates a previously unrecognized mechanism by which a podocyte-derived protein directly facilitates podocyte and tubular injury in glomerular diseases and suggests that podocyte-specific functions of RARRES1 and MMP23 may be targeted to ameliorate glomerular disease progression in vivo.


Asunto(s)
Nefropatías Diabéticas , Progresión de la Enfermedad , Glomeruloesclerosis Focal y Segmentaria , Túbulos Renales Proximales , Podocitos , Animales , Humanos , Masculino , Ratones , Apoptosis , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Endocitosis , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Podocitos/metabolismo , Podocitos/patología
9.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428734

RESUMEN

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Receptores de Hialuranos , Factor Estimulante de Colonias de Macrófagos , Podocitos , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Animales , Humanos , Podocitos/metabolismo , Podocitos/patología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Ratones , Proliferación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Masculino , Modelos Animales de Enfermedad , Células Cultivadas , Femenino , Regulación hacia Arriba , Movimiento Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
10.
Am J Hum Genet ; 108(2): 357-367, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508234

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Espacio Intranuclear/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Proteínas del Tejido Nervioso/genética , Adulto , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular , Niño , Preescolar , Codón sin Sentido , Discapacidades del Desarrollo/metabolismo , Epilepsia/metabolismo , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Podocitos/metabolismo , Secuenciación del Exoma
11.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 284-288, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814201

RESUMEN

Podocyte injury plays a vital role in focal segmental glomerulosclerosis (FSGS), and apoptosis is one of its mechanisms. The transient receptor potential channel 6 (TRPC6) is highly expressed in podocytes and mutations mediate podocyte injury. We found TRPC6 gene mutation (N110S) was a new mutation and pathogenic in the preliminary clinical work. The purpose of this study was to investigate the potential mechanism of mutation in TRPC6 (TRPC6-N110S) in the knock-in gene mouse model and in immortalized mouse podocytes (MPC5). Transmission electron microscopy was used to evaluate renal injury morphology. We measured 24-hour urinary albumin-to-creatinine ratios and major biochemical parameters such as serum albumin, urea nitrogen, and total cholesterol. The results of CCK-8 assay and apoptosis experiments showed that the TRPC6-N110S overexpression group had slower proliferative activity and increased apoptosis than the control group. FluO-3 assay revealed increased calcium influx in the TRPC6-N110S overexpression group. Podocin level was decreased in TRPC6-N110S group, while TRPC6 and desmin levels were increased in TRPC6-N110S group. The 24 h uACR at 6 weeks was significantly higher in the pure-zygotes group than in the WT and heterozygotes groups, and this difference was found at 8 and 10 weeks.TRPC6 levels showed no significant difference between homozygote and WT mice. Compared to homozygote group, expression of podocin and nephrin were increased in WT, but levels of desmin was decreased in WT. Our results suggest that this new mutation causes podocyte injury probably by enhancing calcium influx and podocyte apoptosis, accompanied by increased proteinuria and decreased expression of nephrin and podocin.


Asunto(s)
Apoptosis , Mutación con Ganancia de Función , Podocitos , Canal Catiónico TRPC6 , Podocitos/metabolismo , Podocitos/patología , Animales , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Apoptosis/genética , Ratones , Mutación con Ganancia de Función/genética , Calcio/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Desmina/genética , Desmina/metabolismo , Proliferación Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Masculino , Ratones Endogámicos C57BL
12.
Mol Ther ; 31(11): 3337-3354, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689970

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is the most common glomerular disorder causing end-stage renal diseases worldwide. Central to the pathogenesis of FSGS is podocyte dysfunction, which is induced by diverse insults. However, the mechanism governing podocyte injury and repair remains largely unexplored. Asparagine endopeptidase (AEP), a lysosomal protease, regulates substrates by residue-specific cleavage or degradation. We identified the increased AEP expression in the primary proteinuria model which was induced by adriamycin (ADR) to mimic human FSGS. In vivo, global AEP knockout mice manifested increased injury-susceptibility of podocytes in ADR-induced nephropathy (ADRN). Podocyte-specific AEP knockout mice exhibited much more severe glomerular lesions and podocyte injury after ADR injection. In contrast, podocyte-specific augmentation of AEP in mice protected against ADRN. In vitro, knockdown and overexpression of AEP in human podocytes revealed the cytoprotection of AEP as a cytoskeleton regulator. Furthermore, transgelin, an actin-binding protein regulating actin dynamics, was cleaved by AEP, and, as a result, removed its actin-binding regulatory domain. The truncated transgelin regulated podocyte actin dynamics and repressed podocyte hypermotility, compared to the native full-length transgelin. Together, our data reveal a link between lysosomal protease AEP and podocyte cytoskeletal homeostasis, which suggests a potential therapeutic role for AEP in proteinuria disease.


Asunto(s)
Cisteína Endopeptidasas , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Animales , Humanos , Ratones , Actinas/genética , Actinas/metabolismo , Doxorrubicina/efectos adversos , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Enfermedades Renales/metabolismo , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Proteinuria/patología , Cisteína Endopeptidasas/genética
13.
J Am Soc Nephrol ; 34(7): 1222-1239, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134307

RESUMEN

SIGNIFICANCE STATEMENT: Nuclear translocation of dendrin is observed in injured podocytes, but the mechanism and its consequence are unknown. In nephropathy mouse models, dendrin ablation attenuates proteinuria, podocyte loss, and glomerulosclerosis. The nuclear translocation of dendrin promotes c-Jun N -terminal kinase phosphorylation in podocytes, altering focal adhesion and enhancing cell detachment-induced apoptosis. We identified mediation of dendrin nuclear translocation by nuclear localization signal 1 (NLS1) sequence and adaptor protein importin- α . Inhibition of importin- α prevents nuclear translocation of dendrin, decreases podocyte loss, and attenuates glomerulosclerosis in nephropathy models. Thus, inhibiting importin- α -mediated nuclear translocation of dendrin is a potential strategy to halt podocyte loss and glomerulosclerosis. BACKGROUND: Nuclear translocation of dendrin is observed in the glomeruli in numerous human renal diseases, but the mechanism remains unknown. This study investigated that mechanism and its consequence in podocytes. METHODS: The effect of dendrin deficiency was studied in adriamycin (ADR) nephropathy model and membrane-associated guanylate kinase inverted 2 ( MAGI2 ) podocyte-specific knockout ( MAGI2 podKO) mice. The mechanism and the effect of nuclear translocation of dendrin were studied in podocytes overexpressing full-length dendrin and nuclear localization signal 1-deleted dendrin. Ivermectin was used to inhibit importin- α . RESULTS: Dendrin ablation reduced albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Dendrin deficiency also prolonged the lifespan of MAGI2 podKO mice. Nuclear dendrin promoted c-Jun N -terminal kinase phosphorylation that subsequently altered focal adhesion, reducing cell attachment and enhancing apoptosis in cultured podocytes. Classical bipartite nuclear localization signal sequence and importin- α mediate nuclear translocation of dendrin. The inhibition of importin- α / ß reduced dendrin nuclear translocation and apoptosis in vitro as well as albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Importin- α 3 colocalized with nuclear dendrin in the glomeruli of FSGS and IgA nephropathy patients. CONCLUSIONS: Nuclear translocation of dendrin promotes cell detachment-induced apoptosis in podocytes. Therefore, inhibiting importin- α -mediated dendrin nuclear translocation is a potential strategy to prevent podocyte loss and glomerulosclerosis.


Asunto(s)
Glomerulonefritis por IGA , Glomeruloesclerosis Focal y Segmentaria , Podocitos , Humanos , Ratones , Animales , Podocitos/metabolismo , Albuminuria/metabolismo , alfa Carioferinas/metabolismo , Señales de Localización Nuclear/metabolismo , Doxorrubicina/metabolismo , Glomerulonefritis por IGA/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo
14.
Ann Diagn Pathol ; 70: 152292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484478

RESUMEN

Minimal Change Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) are the main causes of nephrotic syndrome in the world. The complement system appears to play an important role in the pathogenesis of these diseases. To evaluate the deposition of immunoglobulins and particles of the complement system in renal biopsies of patients with FSGS and MCD and relate to laboratory data, we selected 59 renal biopsies from patients with podocytopathies, 31 from patients with FSGS and 28 with MCD. Epidemiological, clinical, laboratory information and the prognosis of these patients were evaluated. Analysis of the deposition of IgM, IgG, C3, C1q and C4d in renal biopsies was performed. We related IgM and C3 deposition with laboratory parameters. Statistical analysis was performed using GraphPad Prism version 7.0. Glomerular deposition of IgM was significantly higher in the FSGS group, as was codeposition of IgM and C3. The clinical course of patients and laboratory data were also worse in cases of FSGS, with a higher percentage progressing to chronic kidney disease and death. Patients with C3 deposition had significantly higher mean serum creatinine and significantly lower eGFR, regardless of disease. Patients with FSGS had more IgM and C3 deposition in renal biopsies, worse laboratory data and prognosis than patients with MCD. C3 deposition, both in FSGS and MCD, appears to be related to worsening renal function.


Asunto(s)
Complemento C3 , Glomeruloesclerosis Focal y Segmentaria , Inmunoglobulina M , Glomérulos Renales , Nefrosis Lipoidea , Humanos , Inmunoglobulina M/metabolismo , Complemento C3/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/inmunología , Femenino , Masculino , Adulto , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Persona de Mediana Edad , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/metabolismo , Podocitos/patología , Podocitos/metabolismo , Adulto Joven , Adolescente , Pronóstico , Biopsia , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Síndrome Nefrótico/inmunología , Anciano
15.
Ann Diagn Pathol ; 70: 152281, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417352

RESUMEN

INTRODUCTION: C4d is an activation product of lectin pathway of complement. Glomerular deposition of C4d is associated with poor prognosis in different types of immune-related glomerulonephritis. The present study was conducted to investigate expression level of C4d and its staining pattern in renal biopsy of patients with focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) by immunohistochemistry method. MATERIALS AND METHODS: In this retrospective cross-sectional study, renal biopsy specimens from 46 samples of MCD, 47 samples of FSGS, and 15 samples without glomerular disease as the controls, were subjected to immunohistochemistry staining with C4d. Demographic characteristics and information obtained from light and electron microscopy (EM) of patients were also extracted from their files. RESULTS: C4d positive staining was observed in 97.9 % of FSGS and 43.5 % of MCD samples, which showed a statistically significant difference (P < 0.001). The sensitivity and specificity of C4d expression for diagnosing FSGS were 97.9 % and 56.5 %, respectively. There was no significant correlation between C4d expression and any of the light and electron microscopy findings, including presence of foam cells, mesangial matrix expansion, interstitial fibrosis and tubular atrophy, and basement membrane changes in MCD patients. Also, no significant correlation was observed between C4d expression and clinical symptoms of proteinuria or prolonged high level of creatinine in patients with MCD. DISCUSSION AND CONCLUSION: The expression of C4d marker had a good sensitivity and negative predictive value in the diagnosis of FSGS.


Asunto(s)
Complemento C4b , Glomeruloesclerosis Focal y Segmentaria , Inmunohistoquímica , Nefrosis Lipoidea , Humanos , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Nefrosis Lipoidea/metabolismo , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/diagnóstico , Masculino , Femenino , Estudios Retrospectivos , Adulto , Estudios Transversales , Inmunohistoquímica/métodos , Persona de Mediana Edad , Biopsia/métodos , Complemento C4b/metabolismo , Riñón/patología , Riñón/metabolismo , Adulto Joven , Adolescente , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/análisis , Sensibilidad y Especificidad , Glomérulos Renales/patología , Glomérulos Renales/metabolismo
16.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337270

RESUMEN

The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth (CMT) neuropathy. To investigate how pathogenic INF2 variants alter ER integrity, we used high-resolution live imaging of HeLa cells. Cells expressing wild-type (WT) INF2 showed a predominant tubular ER with perinuclear clustering. Cells expressing INF2 FSGS variants that cause mild and intermediate disease induced more sheet-like ER, a pattern similar to that seen for cells expressing WT-INF2 that were treated with actin and microtubule (MT) inhibitors. Dual CMT-FSGS INF2 variants led to more severe ER dysmorphism, with a diffuse, fragmented ER and coarse INF2 aggregates. Proper organization of both F-actin and MT was needed to modulate the tubule vs. sheet conformation balance, while MT arrays regulated spatial expansion of tubular ER in the cell periphery. Pathogenic INF2 variants also induced mitochondria fragmentation and dysregulated mitochondria distribution. Such mitochondrial abnormalities were more prominent for cells expressing CMT-FSGS compared to those with FSGS variants, indicating that the severity of the dysfunction is linked to the degree of cytoskeletal disorganization. Our observations suggest that pathogenic INF2 variants disrupt ER continuity by altering interactions between the ER and the cytoskeleton that in turn impairs inter-organelle communication, especially at ER-mitochondria contact sites. ER continuity defects may be a common disease mechanism involved in both peripheral neuropathy and glomerulopathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Retículo Endoplásmico , Forminas , Mitocondrias , Humanos , Retículo Endoplásmico/metabolismo , Forminas/metabolismo , Forminas/genética , Células HeLa , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mitocondrias/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Actinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo
17.
Arkh Patol ; 86(5): 21-32, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39434524

RESUMEN

OBJECTIVE: An evaluation of podocyte's molecular phenotype alterations in primary focal segmental glomerulosclerosis (pFSGS) and IgA nephropathy (IgAN). MATERIAL AND METHODS: The exploratory study included 14 cases of morphologically confirmed pFSGS, 14 cases of IgAN, and 12 negative controls. The negative controls comprised samples of the unaltered renal cortex obtained during laparoscopic nephrectomy in patients with malignant neoplasms of the kidney and bladder and without proteinuria. A quantitative immunomorphological study of Wilms tumour protein (WT1) expression and mesenchymal markers of podocytes (desmin and vimentin) was conducted on all kidney samples. The co-expression of the aforementioned molecules was analysed using confocal microscopy. RESULTS: Cases of pFSGS exhibited nephrotic syndrome with proteinuria of 9.3 (3.1-14) g/24 and typical glomerular alterations in light microscopy and ultrastructural analysis. In the IgAN group, proteinuria was less severe (1.2 (0.7-1.6) g/24). The estimated glomerular filtration rate in pFSGS and IgAN was similar (pFSGS: 85 (53-103) ml/min/1.72 m², IgAN: 76 (52-87) ml/min/1.72 m²; p=0.40). In both pFSGS and IgAN, there was a reduction in WT1 expression in podocytes and an increase in vimentin expression when compared to negative controls. Compared to IgAN and controls, pFSGS exhibited a lower prevalence of glomerular WT1 expression and higher expression of desmin, which was predominantly localised in WT1-negative glomerular areas in confocal microscopy. In pFSGS, decreased nuclear expression of WT1 and increased expression of desmin were observed in the parietal epithelium of the glomerular capsule. CONCLUSION: Bidirectional alterations in the glomerular expression of WT1 and intermediate filament proteins are apparent in pFSGS and IgAN. These findings are suggestive for the genomic reprogramming of podocytes and the parietal epithelium of the glomerulus as part of the epithelial-mesenchymal transition, determining the structural and functional disorders of these cells, more prominent in pFSGS.


Asunto(s)
Glomerulonefritis por IGA , Glomeruloesclerosis Focal y Segmentaria , Podocitos , Vimentina , Proteínas WT1 , Humanos , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Masculino , Proteínas WT1/genética , Proteínas WT1/metabolismo , Femenino , Adulto , Vimentina/metabolismo , Vimentina/genética , Persona de Mediana Edad , Desmina/genética , Desmina/metabolismo , Proteinuria/genética , Proteinuria/patología , Proteinuria/metabolismo
18.
Hum Mol Genet ; 30(3-4): 182-197, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33517446

RESUMEN

Lipotoxicity was recently reported in several forms of kidney disease, including focal segmental glomerulosclerosis (FSGS). Susceptibility to FSGS in African Americans is associated with the presence of genetic variants of the Apolipoprotein L1 gene (APOL1) named G1 and G2. If and how endogenous APOL1 may alter mitochondrial function by the modifying cellular lipid metabolism is unknown. Using transgenic mice expressing the APOL1 variants (G0, G1 or G2) under endogenous promoter, we show that APOL1 risk variant expression in transgenic mice does not impair kidney function at baseline. However, APOL1 G1 expression worsens proteinuria and kidney function in mice characterized by the podocyte inducible expression of nuclear factor of activated T-cells (NFAT), which we have found to cause FSGS. APOL1 G1 expression in this FSGS-model also results in increased triglyceride and cholesterol ester contents in kidney cortices, where lipid accumulation correlated with loss of renal function. In vitro, we show that the expression of endogenous APOL1 G1/G2 in human urinary podocytes is associated with increased cellular triglyceride content and is accompanied by mitochondrial dysfunction in the presence of compensatory oxidative phosphorylation (OXPHOS) complexes elevation. Our findings indicate that APOL1 risk variant expression increases the susceptibility to lipid-dependent podocyte injury, ultimately leading to mitochondrial dysfunction.


Asunto(s)
Apolipoproteína L1/genética , Variación Genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Podocitos/metabolismo , Negro o Afroamericano/genética , Animales , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Homeostasis , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/fisiología , Podocitos/fisiología , Proteinuria , Triglicéridos/metabolismo
19.
Mol Cell Biochem ; 478(5): 981-989, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36201104

RESUMEN

The focal segmental glomerulosclerosis (FSGS) is one of the most frequent glomerulopathy in the world, being considered a significative public health problem worldwide. The disease is characterized by glomerular loss mainly due to inflammation process and collagen fibers deposition. STAT-3 is a transcription factor associated with cell differentiation, migration and proliferation and in renal cells it has been related with fibrosis, acting on the progression of the lesion. Considering this perspective, the present study evaluated the involvement of STAT-3 molecule in an experimental model of FSGS induced by Doxorubicin (DOX). DOX mimics primary FSGS by causing both glomerular and tubular lesions and the inhibition of the STAT3 pathway leads to a decrease in fibrosis and attenuation of kidney damage. We described here a novel FSGS experimental model in a strain of genetically heterogeneous mice which resembles the reality of FSGS patients. DOX-injected mice presented elevated indices of albuminuria and glycosuria, that were significantly reduced in animals treated with a STAT-3 inhibitor (STATTIC), in addition with a decrease of some inflammatory molecules. Moreover, we detected that SOCS-3 (a regulator of STAT family) was up-regulated only in STATTIC-treated mice. Finally, histopathological analyzes showed that DOX-treated group had a significant increase in a tubulointerstitial fibrosis and tubular necrosis, which were not identified in both control and STATTIC groups. Thus, our results indicate that STAT-3 pathway possess an important role in experimental FSGS induced by DOX and may be an important molecule to be further investigated.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Ratones , Animales , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/patología , Doxorrubicina/efectos adversos , Fibrosis
20.
Nephrol Dial Transplant ; 38(9): 1931-1939, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36708169

RESUMEN

Autophagy is a complex process of lysosomal-dependent degradation of unwanted cellular material. In response to endogenous or exogenous stimuli, autophagy is induced and regulated by two kinases: the AMP activated kinase and the mammalian target of rapamycin (mTOR). Cells activated by Unc-51-like kinase 1 form a double membrane complex that sequesters the cargo (phagophore) and elongates producing spherical vesicles (autophagosomes). These reach and fuse with lysosomes, which degrade the cargo (autolysosomes). The resulting macromolecules are released back and recycled in the cytosol for reuse. In the podocyte, autophagy is a homeostatic mechanism that contributes to the formation and preservation of the morphological and functional integrity of actin cytoskeleton. Podocytes, fenestrated endothelial cells and glomerular basement membrane compose the glomerular filtration barrier. Podocyte damage may cause dysfunction of the glomerular barrier, proteinuria and glomerulosclerosis in different glomerular diseases and particularly in so-called podocytopathies, namely minimal change disease and focal segmental glomerulosclerosis. Several drugs and molecules may activate autophagic function in murine models. Among them, aldosterone inhibitors, mineralocorticoid inhibitors and vitamin D3 were proven to protect podocyte from injury and reduce proteinuria in clinical studies. However, no clinical trial with autophagy regulators in podocytopathies has been conducted. Caution is needed with other autophagy activators, such as mTOR inhibitors and metformin, because of potential adverse events.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Podocitos/metabolismo , Enfermedades Renales/metabolismo , Autofagia , Proteinuria/metabolismo , Membrana Basal Glomerular/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA