RESUMEN
Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.
Asunto(s)
Histonas , Lisina , Neoplasias , Procesamiento Proteico-Postraduccional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/deficiencia , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , ARN Bicatenario/inmunología , Humanos , Animales , Ratones , Interferón Tipo I/inmunologíaRESUMEN
Glutaric Aciduria type I (GA1) is a rare neurometabolic disorder caused by mutations in the GDCH gene encoding for glutaryl-CoA dehydrogenase (GCDH) in the catabolic pathway of lysine, hydroxylysine and tryptophan. GCDH deficiency leads to increased concentrations of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body fluids and tissues. These metabolites are the main triggers of brain damage. Mechanistic studies supporting neurotoxicity in mouse models have been conducted. However, the different vulnerability to some stressors between mouse and human brain cells reveals the need to have a reliable human neuronal model to study GA1 pathogenesis. In the present work we generated a GCDH knockout (KO) in the human neuroblastoma cell line SH-SY5Y by CRISPR/Cas9 technology. SH-SY5Y-GCDH KO cells accumulate GA, 3-OHGA, and glutarylcarnitine when exposed to lysine overload. GA or lysine treatment triggered neuronal damage in GCDH deficient cells. SH-SY5Y-GCDH KO cells also displayed features of GA1 pathogenesis such as increased oxidative stress vulnerability. Restoration of the GCDH activity by gene replacement rescued neuronal alterations. Thus, our findings provide a human neuronal cellular model of GA1 to study this disease and show the potential of gene therapy to rescue GCDH deficiency.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Lisina , Neuroblastoma , Humanos , Animales , Ratones , Lisina/genética , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Ratones Noqueados , Terapia GenéticaRESUMEN
BACKGROUND & AIMS: Crotonylation, a crotonyl-CoA-based non-enzymatic protein translational modification, affects diverse biological processes, such as spermatogenesis, tissue injury, inflammation, and neuropsychiatric diseases. Crotonylation is decreased in hepatocellular carcinomas (HCCs), but the mechanism remains unknown. In this study, we aim to describe the role of glutaryl-CoA dehydrogenase (GCDH) in tumor suppression. METHODS: Three cohorts containing 40, 248 and 17 pairs of samples were used to evaluate the link between GCDH expression levels and clinical characteristics of HCC, as well as responses to anti-programmed cell death protein 1 (PD-1) treatment. Subcutaneous xenograft, orthotopic xenograft, Trp53Δhep/Δhep; MYC- and Ctnnboe; METoe-driven mouse models were adopted to validate the effects of GCDH on HCC suppression. RESULTS: GCDH depletion promoted HCC growth and metastasis, whereas its overexpression reversed these processes. As GCDH converts glutaryl-CoA to crotonyl-CoA to increase crotonylation levels, we performed lysine crotonylome analysis and identified the pentose phosphate pathway (PPP) and glycolysis-related proteins PGD, TKT, and ALDOC as GCDH-induced crotonylation targets. Crotonyl-bound targets showed allosteric effects that controlled their enzymatic activities, leading to decreases in ribose 5-phosphate and lactate production, further limiting the Warburg effect. PPP blockade also stimulated peroxidation, synergizing with senescent modulators to induce senescence in GCDHhigh cells. These cells induced the infiltration of immune cells by the SASP (senescence-associated secretory cell phenotype) to shape an anti-tumor immune microenvironment. Meanwhile, the GCDHlow population was sensitized to anti-PD-1 therapy. CONCLUSION: GCDH inhibits HCC progression via crotonylation-induced suppression of the PPP and glycolysis, resulting in HCC cell senescence. The senescent cell further shapes an anti-tumor microenvironment via the SASP. The GCDHlow population is responsive to anti-PD-1 therapy because of the increased presence of PD-1+CD8+ T cells. IMPACT AND IMPLICATIONS: Glutaryl-CoA dehydrogenase (GCDH) is a favorable prognostic indicator in liver, lung, and renal cancers. In addition, most GCDH depletion-induced toxic metabolites originate from the liver, accumulate locally, and cannot cross the blood-brain barrier. Herein, we show that GCDH inhibits hepatocellular carcinoma (HCC) progression via crotonylation-induced suppression of the pentose phosphate pathway and glycolysis, resulting in HCC cell senescence. We also found that more PD-1+CD8+ T cells are present in the GCDHlow population, who are thus more responsive to anti-PD-1 therapy. Given that the GCDHlow and GCDHhigh HCC population can be distinguished based on serum glucose and ammonia levels, it will be worthwhile to evaluate the curative effects of pro-senescent and immune-therapeutic strategies based on the expression levels of GCDH.
Asunto(s)
Carcinoma Hepatocelular , Glutaril-CoA Deshidrogenasa , Neoplasias Hepáticas , Microambiente Tumoral , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Glutaril-CoA Deshidrogenasa/metabolismoRESUMEN
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.
Asunto(s)
Glutaril-CoA Deshidrogenasa , Lisina , Sirtuinas , Animales , Glutaril-CoA Deshidrogenasa/metabolismo , Lisina/metabolismo , Ratones , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Sirtuinas/metabolismo , Triptófano/metabolismoRESUMEN
Glutaric aciduria type 1 (GA1) is a rare neurometabolic disease caused by pathogenic variants in the gene encoding the enzyme glutaryl-CoA dehydrogenase (GCDH). We performed an extensive literature search to collect data on GA1 patients, together with unpublished cases, to provide an up-to-date genetic landscape of GCDH pathogenic variants and to investigate potential genotype-phenotype correlation, as this is still poorly understood. From this search, 421 different GCDH pathogenic variants have been identified, including four novel variants; c.179T>C (p.Leu60Pro), c.214C>T (p.Arg72Cys), c.309G>C (p.Leu103Phe), and c.665T>C (p.Phe222Ser).The variants are mostly distributed across the entire gene; although variant frequency in GA1 patients is relatively high in the regions encoding for active domains of GCDH. To investigate potential genotype-phenotype correlations, phenotypic descriptions of 532 patients have been combined and evaluated using novel combinatorial analyses. To do so, various clinical phenotypes were determined for each pathogenic variant by combining the information of all GA1 patients reported with this pathogenic variant, and subsequently mapped onto the 2D and 3D GCDH protein structure. In addition, the predicted pathogenicity of missense variants was analyzed using different in silico prediction score models. Both analyses showed an almost similar distribution of the highly pathogenic variants across the GCDH protein, although some hotspots, including the active domain, were observed. Moreover, it was demonstrated that highly pathogenic variants are significantly correlated with lower residual enzyme activity and the most accurate estimation was achieved by the REVEL score. A clear correlation of the genotype and the clinical phenotype however is still lacking.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Humanos , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Encefalopatías Metabólicas/metabolismo , Mutación Missense , Errores Innatos del Metabolismo de los Aminoácidos/metabolismoRESUMEN
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.
Asunto(s)
Acilcoenzima A/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Células Cultivadas , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Células HEK293 , Humanos , Cetona Oxidorreductasas/genética , Especificidad por Sustrato/genéticaRESUMEN
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/metabolismo , Gliosis/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Arginina/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Creatina/sangre , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Gliosis/metabolismo , Gliosis/patología , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/metabolismo , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , RatasRESUMEN
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kgâ¢day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kgâ¢day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/dietoterapia , Errores Innatos del Metabolismo de los Aminoácidos/epidemiología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/dietoterapia , Encefalopatías Metabólicas/epidemiología , Encefalopatías Metabólicas/metabolismo , Carnitina/metabolismo , Niño , Preescolar , Cuerpo Estriado/patología , Dieta , Femenino , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lactante , Recién Nacido , Lisina/metabolismo , MasculinoRESUMEN
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Epilepsia/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/metabolismo , Mitocondrias/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Citosol/metabolismo , Epilepsia/metabolismo , Epilepsia/patología , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/biosíntesis , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/patología , Especificidad de Órganos/genética , Peroxisomas/genética , Peroxisomas/metabolismoRESUMEN
Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.
Asunto(s)
Aldehído Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas Innatas/metabolismo , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldehído Deshidrogenasa/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Arginina/uso terapéutico , Encéfalo/patología , Encefalopatías Metabólicas/terapia , Encefalopatías Metabólicas Innatas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapéutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapéuticoRESUMEN
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.
Asunto(s)
Ácido 2-Aminoadípico/análogos & derivados , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Hígado/metabolismo , Ácido 2-Aminoadípico/genética , Ácido 2-Aminoadípico/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Animales , Encéfalo/patología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/terapia , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Femenino , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Células HEK293 , Humanos , Hígado/patología , Masculino , Ratones , Ratones NoqueadosRESUMEN
Riboflavin is the biological precursor of two important flavin cofactors-flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)-that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the GCDH gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH). Although there are a few reported clinical cases that have responded to riboflavin intake, there is still not enough molecular evidence supporting therapeutic recommendation. Hence, it is necessary to elucidate the molecular basis in favor of riboflavin supplementation in GA-I patients. Here, using a combination of biochemical and biophysical methodologies, we investigate the clinical variant GCDH-p.Val400Met as a model for a phenotype associated with severe deflavinylation. Through a systematic analysis, we establish that recombinant human GCDH-p.Val400Met is expressed in a nonfunctional apo form, which is mainly monomeric rather than tetrameric. However, we show that exogenous FAD is a driver for structural reorganization of the mutant enzyme with concomitant functional recovery, improved thermolability, and resistance to trypsin digestion. Overall, these results establish proof of principle for the beneficial effects of riboflavin supplementation in GA-I patients.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Riboflavina , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Glutaril-CoA Deshidrogenasa/química , Glutaril-CoA Deshidrogenasa/efectos de los fármacos , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Mutación , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteínas Recombinantes , Riboflavina/farmacologíaRESUMEN
Glutaric acidemia type 1 (GA1) is an inherited metabolic autosomal recessive disorder that is caused by a deficiency in glutaryl-CoA dehydrogenase (GCDH). Untreated patients suffer primarily from severe striatal damage. More than 250 variants in the GCDH gene have been reported with a variable frequency among different ethnic groups. In this study, we aimed to characterize 89 Egyptian patients with GA1 and identify the variants in the 41 patients who were available for genotyping. All of our patients demonstrated clinical, neuroradiological, and biochemical characteristics that are consistent with a diagnosis of GA1. All patients presented with variable degrees of developmental delay ranging from mild to severe. Most of the 89 patients presented with acute onset type (71.9%), followed by insidious (19%) and asymptomatic (9%). A delay in diagnosis was inversely associated with macrocephaly. The prevalence rate ratio (PR) for macrocephaly that was associated with each 6-month delay was 0.95 (95%CI 0.91-0.99). However, high body weight was associated with a higher likelihood of having macrocephaly (PR 1.16, 95%CI 1.06-1.26 per 1 SD increment of Z score weight). However, body weight was inversely associated with the morbidity score. Consanguinity level was 64% among our patient's cohort and was positively associated with the C5DC level (ß (95%CI) 1.06 (0.12-1.99)). Forty-one patients were available for genotyping and were sequenced for the GCDH gene. We identified a total of 25 variants, of which the following six novel variants were identified: three missense variants, c.320G > T (p.Gly107Val), c.481C > T (p.Arg161Trp) and c.572 T > G (p.Met191Arg); two deletions, c.78delG (p.Ala27Argfs34) and c.1035delG (p.Gly346Alafs*11); and one indel, c.272_331del (p.Val91_Lys111delinsGlu). All of the novel variants were absent in the 300 normal chromosomes. The most common variant, c.*165A > G, was detected in 42 alleles, and the most commonly detected missense variant, c.1204C > T (p.Arg402Trp), was identified in 29 mutated alleles in 15/41 (34.2%) of patients. Our findings suggest that GA1 is not uncommon organic acidemia disease in Egypt; therefore, there is a need for supporting neonatal screening programs in Egypt.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Encefalopatías Metabólicas/diagnóstico , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico por imagen , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Peso Corporal/fisiología , Encéfalo/diagnóstico por imagen , Encefalopatías Metabólicas/diagnóstico por imagen , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Niño , Preescolar , Egipto , Femenino , Genotipo , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación Missense , Índice de Severidad de la Enfermedad , Evaluación de SíntomasRESUMEN
The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Carnitina/farmacología , Daño del ADN , Glutaril-CoA Deshidrogenasa/deficiencia , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carnitina/uso terapéutico , Niño , Preescolar , Femenino , Glutaril-CoA Deshidrogenasa/efectos de los fármacos , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lactante , Masculino , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Especies de Nitrógeno ReactivoRESUMEN
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/mortalidad , Errores Innatos del Metabolismo de los Aminoácidos/orina , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/orina , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/metabolismo , Glutaril-CoA Deshidrogenasa/orina , Humanos , Recién Nacido , Ácido Metilmalónico/metabolismo , Tamizaje Neonatal , Valor Predictivo de las Pruebas , Propionatos/metabolismo , Espectrometría de Masas en TándemRESUMEN
Glutaric aciduria type I is a rare, autosomal recessive, inherited defect of glutaryl-CoA dehydrogenase. Deficiency of this protein in L-lysine degradation leads to the characteristic accumulation of nontoxic glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, and 3-hydroxyglutaric acid. Untreated patients develop bilateral lesions of basal ganglia resulting in a complex movement disorder with predominant dystonia in infancy and early childhood. The current pathomechanistic concept strongly focuses on imbalanced neuronal energy metabolism due to accumulating metabolites, whereas little is known about the pathomechanistic role of astrocytes, which are thought to be in constant metabolic crosstalk with neurons. We found that glutaric acid (GA) causes astrocytic cell death under starvation cell culture conditions, i.e. low glucose, without glutamine and fetal calf serum. Glutamine completely abolished GA-induced toxicity, suggesting involvement of glutaminolysis. Increasing dependence on glutaminolysis by chemical induction of hypoxia signaling-potentiated GA-induced toxicity. We further show that GA disturbs glutamine degradation by specifically inhibiting glutamate dehydrogenase. Summarizing our study shows that pathologically relevant concentrations of GA block an important step in the metabolic crosstalk between neurons and astrocytes, ultimately leading to astrocytic cell death.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Astrocitos/efectos de los fármacos , Encefalopatías Metabólicas/metabolismo , Inhibidores Enzimáticos/toxicidad , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamina/metabolismo , Glutaratos/toxicidad , Glutaril-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encefalopatías Metabólicas/patología , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Glutamato Deshidrogenasa/metabolismo , Glutamina/farmacología , Glutaril-CoA Deshidrogenasa/metabolismo , RatasRESUMEN
Glutaric acidemia type I (GA-I) is an inherited neurometabolic childhood disorder caused by defective activity of glutaryl CoA dehydrogenase (GCDH) which disturb lysine (Lys) and tryptophan catabolism leading to neurotoxic accumulation of glutaric acid (GA) and related metabolites. However, it remains unknown whether GA toxicity is due to direct effects on vulnerable neurons or mediated by GA-intoxicated astrocytes that fail to support neuron function and survival. As damaged astrocytes can also contribute to sustain high GA levels, we explored the ability of Gcdh-/- mouse astrocytes to produce GA and induce neuronal death when challenged with Lys. Upon Lys treatment, Gcdh-/- astrocytes synthetized and released GA and 3-hydroxyglutaric acid (3HGA). Lys and GA treatments also increased oxidative stress and proliferation in Gcdh-/- astrocytes, both prevented by antioxidants. Pretreatment with Lys also caused Gcdh-/- astrocytes to induce extensive death of striatal and cortical neurons when compared with milder effect in WT astrocytes. Antioxidants abrogated the neuronal death induced by astrocytes exposed to Lys or GA. In contrast, Lys or GA direct exposure on Gcdh-/- or WT striatal neurons cultured in the absence of astrocytes was not toxic, indicating that neuronal death is mediated by astrocytes. In summary, GCDH-defective astrocytes actively contribute to produce and accumulate GA and 3HGA when Lys catabolism is stressed. In turn, astrocytic GA production induces a neurotoxic phenotype that kills striatal and cortical neurons by an oxidative stress-dependent mechanism. Targeting astrocytes in GA-I may prompt the development of new antioxidant-based therapeutical approaches.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Astrocitos/metabolismo , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Cuerpo Estriado/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Neuronas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Astrocitos/patología , Encefalopatías Metabólicas/patología , Supervivencia Celular/genética , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Ratones , Ratones Noqueados , Neuronas/patologíaRESUMEN
Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh-/-) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh-/- mice but not Dhtkd1-/- mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1-/-/Gcdh-/- mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh-/- mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Cetona Oxidorreductasas/deficiencia , Hígado/metabolismo , Lisina/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Animales , Encéfalo/patología , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/terapia , Modelos Animales de Enfermedad , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Cetona Oxidorreductasas/metabolismo , Hígado/patología , Ratones , Ratones NoqueadosRESUMEN
OBJECTIVES: Glutaric acidemia type I (GA-I) is an inherited neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) and characterized by increased levels of glutaric, 3-OH-glutaric, and glutaconic acids in the brain parenchyma. The increment of these organic acids inhibits glutamate decarboxylase (GAD) and consequently lowers the γ-aminobutyric acid (GABA) synthesis. Untreated patients exhibit severe neurologic deficits during development, including epilepsy, especially following an acute encephalopathy outbreak. In this work, we evaluated the role of the GABAergic system on epileptogenesis in GA-I using the Gcdh-/- mice exposed to a high lysine diet (Gcdh-/- -Lys). METHODS: Spontaneous recurrent seizures (SRS), seizure susceptibility, and changes in brain oscillations were evaluated by video-electroencephalography (EEG). Cortical GABAergic synaptic transmission was evaluated using electrophysiologic and neurochemical approaches. RESULTS: SRS were observed in 72% of Gcdh-/- -Lys mice, whereas no seizures were detected in age-matched controls (Gcdh+/+ or Gcdh-/- receiving normal diet). The severity and number of PTZ-induced seizures were higher in Gcdh-/- -Lys mice. EEG spectral analysis showed a significant decrease in theta and gamma oscillations and predominant delta waves in Gcdh-/- -Lys mice, associated with increased EEG left index. Analysis of cortical synaptosomes revealed a significantly increased percentage of glutamate release and decreased GABA release in Gcdh-/- -Lys mice that were associated with a decrease in cortical GAD immunocontent and activity and confirmed by reduced frequency of inhibitory events in cortical pyramidal cells. SIGNIFICANCE: Using an experimental model with a phenotype similar to that of GA-I in humans-the Gcdh-/- mice under high lysine diet (Gcdh-/- -Lys)-we provide evidence that a reduction in cortical inhibition of Gcdh-/- -Lys mice, probably induced by GAD dysfunction, leads to hyperexcitability and increased slow oscillations associated with neurologic abnormalities in GA-I. Our findings offer a new perspective on the pathophysiology of brain damage in GA-I.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/efectos de los fármacos , Epilepsia/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Ácido gamma-Aminobutírico/efectos de los fármacos , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Western Blotting , Encefalopatías Metabólicas/metabolismo , Cromatografía Líquida de Alta Presión , Epilepsia/metabolismo , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Ratones , Ratones Noqueados , Pentilenotetrazol/farmacología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Glutaric aciduria type I (GA-I; synonym, glutaric acidemia type I) is a rare inherited metabolic disease caused by deficiency of glutaryl-CoA dehydrogenase located in the catabolic pathways of L-lysine, L-hydroxylysine, and L-tryptophan. The enzymatic defect results in elevated concentrations of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutaryl carnitine in body tissues, which can be reliably detected by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Most untreated individuals with GA-I experience acute encephalopathic crises during the first 6 years of life that are triggered by infectious diseases, febrile reaction to vaccinations, and surgery. These crises result in striatal injury and consequent dystonic movement disorder; thus, significant mortality and morbidity results. In some patients, neurologic disease may also develop without clinically apparent crises at any age. Neonatal screening for GA-I us being used in a growing number of countries worldwide and is cost effective. Metabolic treatment, consisting of low lysine diet, carnitine supplementation, and intensified emergency treatment during catabolism, is effective treatment and improves neurologic outcome in those individuals diagnosed early; treatment after symptom onset, however, is less effective. Dietary treatment is relaxed after age 6 years and should be supervised by specialized metabolic centers. The major aim of this second revision of proposed recommendations is to re-evaluate the previous recommendations (Kölker et al. J Inherit Metab Dis 30:5-22, 2007b; J Inherit Metab Dis 34:677-694, 2011) and add new research findings, relevant clinical aspects, and the perspective of affected individuals.