Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.068
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636663

RESUMEN

Vitamin B12 (cobalamin or Cbl) functions as a cofactor in two important enzymatic processes in human cells, and life is not sustainable without it. B12 is obtained from food and travels from the stomach, through the intestine, and into the bloodstream by three B12-transporting proteins: salivary haptocorrin (HC), gastric intrinsic factor, and transcobalamin (TC), which all bind B12 with high affinity and require proteolytic degradation to liberate Cbl. After intracellular delivery of dietary B12, Cbl in the aquo/hydroxocobalamin form can coordinate various nucleophiles, for example, GSH, giving rise to glutathionylcobalamin (GSCbl), a naturally occurring form of vitamin B12. Currently, there is no data showing whether GSCbl is recognized and transported in the human body. Our crystallographic data shows for the first time the complex between a vitamin B12 transporter and GSCbl, which compared to aquo/hydroxocobalamin, binds TC equally well. Furthermore, sequence analysis and structural comparisons show that TC recognizes and transports GSCbl and that the residues involved are conserved among TCs from different organisms. Interestingly, haptocorrin and intrinsic factor are not structurally tailored to bind GSCbl. This study provides new insights into the interactions between TC and Cbl.


Asunto(s)
Glutatión , Ratas , Transcobalaminas , Vitamina B 12 , Animales , Cristalografía por Rayos X , Glutatión/metabolismo , Glutatión/análogos & derivados , Glutatión/química , Unión Proteica , Transcobalaminas/metabolismo , Transcobalaminas/química , Vitamina B 12/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/química
2.
Biosci Biotechnol Biochem ; 88(8): 918-922, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777629

RESUMEN

Chitosan (CHT) is a deacylated derivative of chitin and improves growth and yield performance, activates defensive genes, and also induces stomatal closure in plants. Glutathione (GSH) has significant functions in the growth, development, defense systems, signaling, and gene expression. GSH negatively regulates abscisic acid-, methyl jasmonate-, and salicylic acid-induced stomatal closure. However, the negative regulation by GSH of CHT-induced stomatal closure is still unknown. Regulation of CHT-induced stomatal closure by GSH in guard cells was investigated using two GSH-deficient mutants, cad2-1 and chlorina 1-1 (ch1-1), and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). The cad2-1 and ch1-1 mutations and CDNB treatment enhanced CHT-induced stomatal closure. Treatment with glutathione monoethyl ester restored the GSH level in the guard cells of cad2-1 and ch1-1 and complemented the stomatal phenotype of the mutants. These results indicate that GSH negatively regulates CHT-induced stomatal closure in Arabidopsis thaliana.


Asunto(s)
Arabidopsis , Quitosano , Glutatión , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Glutatión/metabolismo , Glutatión/análogos & derivados , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Quitosano/farmacología , Mutación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Dinitroclorobenceno/farmacología
3.
Int J Mol Sci ; 25(20)2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39456744

RESUMEN

Representatives of the colorless sulfur bacteria of the genus Beggiatoa use reduced sulfur compounds in the processes of lithotrophic growth, which is accompanied by the storage of intracellular sulfur. However, it is still unknown how the transformation of intracellular sulfur occurs in Beggiatoa representatives. Annotation of the genome of Beggiatoa leptomitoformis D-402 did not identify any genes for the oxidation or reduction of elemental sulfur. By searching BLASTP, two putative persulfide dioxygenase (PDO) homologs were found in the genome of B. leptomitoformis. In some heterotrophic prokaryotes, PDO is involved in the oxidation of sulfane sulfur. According to HPLC-MS/MS, the revealed protein was reliably detected in a culture sample grown only in the presence of endogenous sulfur and CO2. The recombinant protein from B. leptomitoformis was active in the presence of glutathione persulfide. The crystal structure of recombinant PDO exhibited consistency with known structures of type I PDO. Thus, it was shown that B. leptomitoformis uses PDO to oxidize endogenous sulfur. Additionally, on the basis of HPLC-MS/MS, RT-qPCR, and the study of PDO reaction products, we predicted the interrelation of PDO and Sox-system function in the oxidation of endogenous sulfur in B. leptomitoformis and the connection of this process with energy metabolism.


Asunto(s)
Dioxigenasas , Oxidación-Reducción , Azufre , Azufre/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/genética , Dioxigenasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Glutatión/metabolismo , Glutatión/análogos & derivados , Espectrometría de Masas en Tándem , Sulfuros/metabolismo , Disulfuros
4.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792079

RESUMEN

Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.


Asunto(s)
Amida Sintasas , Glutatión , NADH NADPH Oxidorreductasas , Trypanosoma , NADH NADPH Oxidorreductasas/metabolismo , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Humanos , Amida Sintasas/metabolismo , Amida Sintasas/antagonistas & inhibidores , Trypanosoma/efectos de los fármacos , Trypanosoma/metabolismo , Glutatión/metabolismo , Glutatión/análogos & derivados , Animales , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efectos de los fármacos , Leishmania/metabolismo , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Trypanosomatina/metabolismo , Trypanosomatina/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(27): 15799-15808, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571908

RESUMEN

The transcriptome of eukaryotic cells is constantly monitored for errors to avoid the production of undesired protein variants. The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway degrades aberrant mRNAs, but also functions in the regulation of transcript abundance in response to changed physiological states. Here, we describe a zebrafish mutant of upf1, encoding the central component of the NMD machinery. Fish homozygous for the upf1t20450 allele (Y163X) survive until day 10 after fertilization, presenting with impaired T cell development as one of the most conspicuous features of the mutant phenotype. Analysis of differentially expressed genes identified dysregulation of the pre-mRNA splicing pathway, accompanied by perturbed autoregulation of canonical splicing activators (SRSF) and repressors (HNRNP). In upf1-deficient mutants, NMD-susceptible transcripts of ribosomal proteins that are known for their role as noncanonical splicing regulators were greatly increased, most notably, rpl10a When the levels of NMD-susceptible rpl10a transcripts were artificially increased in zebrafish larvae, T cell development was significantly impaired, suggesting that perturbed autoregulation of rpl10a splicing contributes to failing T cell development in upf1 deficiency. Our results identify an extraribosomal tissue-specific function to rpl10a in the immune system, and thus exemplify the advantages of the zebrafish model to study the effects of upf1-deficiency in the context of a vertebrate organism.


Asunto(s)
Glutatión/análogos & derivados , Degradación de ARNm Mediada por Codón sin Sentido/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Linfocitos T/inmunología , Proteínas de Pez Cebra/genética , Animales , Codón sin Sentido/genética , Fertilización/genética , Regulación del Desarrollo de la Expresión Génica/genética , Glutatión/genética , Homocigoto , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/inmunología , ARN Mensajero/genética , Factores de Transcripción/genética , Transcriptoma/genética , Pez Cebra/genética
6.
J Biol Chem ; 296: 100429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33609525

RESUMEN

The formation of a persulfide group (-SSH) on cysteine residues has gained attention as a reversible posttranslational modification contributing to protein regulation or protection. The widely distributed 3-mercaptopyruvate sulfurtransferases (MSTs) are implicated in the generation of persulfidated molecules and H2S biogenesis through transfer of a sulfane sulfur atom from a suitable donor to an acceptor. Arabidopsis has two MSTs, named STR1 and STR2, but they are poorly characterized. To learn more about these enzymes, we conducted a series of biochemical experiments including a variety of possible reducing systems. Our kinetic studies, which used a combination of sulfur donors and acceptors revealed that both MSTs use 3-mercaptopyruvate efficiently as a sulfur donor while thioredoxins, glutathione, and glutaredoxins all served as high-affinity sulfane sulfur acceptors. Using the redox-sensitive GFP (roGFP2) as a model acceptor protein, we showed that the persulfide-forming MSTs catalyze roGFP2 oxidation and more generally trans-persulfidation reactions. However, a preferential interaction with the thioredoxin system and glutathione was observed in case of competition between these sulfur acceptors. Moreover, we observed that MSTs are sensitive to overoxidation but are protected from an irreversible inactivation by their persulfide intermediate and subsequent reactivation by thioredoxins or glutathione. This work provides significant insights into Arabidopsis STR1 and STR2 catalytic properties and more specifically emphasizes the interaction with cellular reducing systems for the generation of H2S and glutathione persulfide and reactivation of an oxidatively modified form.


Asunto(s)
Sulfurtransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Catálisis , Dominio Catalítico , Disulfuros , Glutatión/análogos & derivados , Sulfuro de Hidrógeno/metabolismo , Cinética , Oxidación-Reducción , Azufre/metabolismo , Sulfurtransferasas/genética , Sulfurtransferasas/fisiología
7.
Mol Microbiol ; 115(2): 238-254, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33047379

RESUMEN

The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.


Asunto(s)
Aspergillus nidulans/genética , Histonas/genética , ARN Mensajero/genética , Regiones no Traducidas 3'/genética , Replicación del ADN/fisiología , Glutatión/análogos & derivados , Glutatión/genética , Glutatión/metabolismo , Histonas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Uridina/química
8.
Nitric Oxide ; 118: 49-58, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715361

RESUMEN

Redox signaling, wherein reactive and diffusible small molecules are channeled into specific messenger functions, is a critical component of signal transduction. A central principle of redox signaling is that the redox modulators are produced in a highly controlled fashion to specifically modify biotargets. Thiols serve as primary mediators of redox signaling as a function of the rich variety of adducts, which allows initiation of distinct cellular effects. Coupling the inherent reactivity of thiols with highly sensitive and selective chemical analysis protocols can facilitate identification of redox signaling agents, both in solution and in cultured cells. Here, we describe use of capillary zone electrophoresis to both identify and quantify sulfinamides, which are specific markers of the reaction of thiols with nitroxyl (HNO), a putative biologically relevant reactive nitrogen species.


Asunto(s)
Óxidos de Nitrógeno/análisis , Línea Celular Tumoral , Electroforesis Capilar , Glutatión/análogos & derivados , Glutatión/análisis , Glutatión/química , Humanos , Óxidos de Nitrógeno/química
9.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054903

RESUMEN

Extracellular glutathione (GSH) and oxidized glutathione (GSSG) can modulate the function of the extracellular calcium sensing receptor (CaSR). The CaSR has a binding pocket in the extracellular domain of CaSR large enough to bind either GSH or GSSG, as well as the naturally occurring oxidized derivative L-cysteine glutathione disulfide (CySSG) and the compound cysteinyl glutathione (CysGSH). Modeling the binding energies (ΔG) of CySSG and CysGSH to CaSR reveals that both cysteine derivatives may have greater affinities for CaSR than either GSH or GSSG. GSH, CySSG, and GSSG are found in circulation in mammals and, among the three, CySSG is more affected by HIV/AIDs and aging than either GSH or GSSG. The beta-carbon linkage of cysteine in CysGSH may model a new class of calcimimetics, exemplified by etelcalcetide. Circulating glutathionergic compounds, particularly CySSG, may mediate calcium-regulatory responses via receptor-binding to CaSR in a variety of organs, including parathyroids, kidneys, and bones. Receptor-mediated actions of glutathionergics may thus complement their roles in redox regulation and detoxification. The glutathionergic binding site(s) on CaSR are suggested to be a target for development of drugs that can be used in treating kidney and other diseases whose mechanisms involve CaSR dysregulation.


Asunto(s)
Espacio Extracelular/metabolismo , Glutatión/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Biomarcadores , Calcio/química , Calcio/metabolismo , Cisteína/análogos & derivados , Glutatión/análogos & derivados , Glutatión/biosíntesis , Glutatión/química , Disulfuro de Glutatión , Humanos , Estructura Molecular , Especificidad de Órganos , Oxidación-Reducción , Unión Proteica , Receptores Sensibles al Calcio/química , Receptores Sensibles al Calcio/genética , Relación Estructura-Actividad
10.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269594

RESUMEN

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glutatión/análogos & derivados , Hesperidina/uso terapéutico , Lactoilglutatión Liasa/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Quimioterapia Combinada , Inducción Enzimática/efectos de los fármacos , Glutatión/química , Glutatión/uso terapéutico , Glicosilación/efectos de los fármacos , Hesperidina/química , Humanos , Resistencia a la Insulina/fisiología , Lactoilglutatión Liasa/antagonistas & inhibidores , Ratones , Estructura Molecular , Neoplasias Experimentales/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/fisiopatología , Piruvaldehído/química , Piruvaldehído/metabolismo , Resveratrol/química
11.
J Biol Chem ; 295(46): 15466-15481, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32873707

RESUMEN

Persulfides (RSSH/RSS-) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/GSS-), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS- presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called α effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the α effect correlated with the Brønsted nucleophilic factor, ßnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the α effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.


Asunto(s)
Disulfuros/química , Glutatión/análogos & derivados , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Disulfuros/análisis , Disulfuros/metabolismo , Glutatión/análisis , Glutatión/química , Glutatión/metabolismo , Peróxido de Hidrógeno/química , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ácido Peroxinitroso/química , Teoría Cuántica , Espectrometría de Masas en Tándem , Termodinámica
12.
Chem Res Toxicol ; 34(9): 2135-2144, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34431675

RESUMEN

Atomoxetine (ATX) is a neurological drug widely used for the treatment of attention deficit-hyperactivity disorder. Liver injury has been documented in patients administered ATX. The mechanism of ATX's toxic action is less clear. This study is aimed to characterize reactive metabolites of ATX in vitro and in vivo to assist our understanding of the mechanisms of ATX hepatotoxicity. A hydroxylated metabolite, along with an O-dealkylation metabolite, was found in ATX-supplemented rat liver microsome incubations. Additionally, two glutathione (GSH) conjugates and two N-acetylcysteine (NAC) conjugates were observed in rat liver microsome incubations containing ATX, NADPH, and GSH or NAC. The corresponding GSH conjugates and NAC conjugates were found in bile and urine of ATX-treated rats, respectively. Recombinant P450 enzyme incubation study demonstrated that CYP2D6 dominated the metabolic activation of ATX. The insights gained from this study may be of assistance to illuminate the mechanisms of ATX-induced hepatotoxicity.


Asunto(s)
Clorhidrato de Atomoxetina/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Activación Metabólica , Animales , Clorhidrato de Atomoxetina/análogos & derivados , Clorhidrato de Atomoxetina/análisis , Glutatión/análogos & derivados , Glutatión/análisis , Hidroxilación , Masculino , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Ratas Sprague-Dawley
13.
Glycoconj J ; 38(3): 347-359, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33245448

RESUMEN

Proteins in the eye lens have negligible turnover and therefore progressively accumulate chemical modifications during aging. Carbonyls and oxidative stresses, which are intricately linked to one another, predominantly drive such modifications. Oxidative stress leads to the loss of glutathione (GSH) and ascorbate degradation; this in turn leads to the formation of highly reactive dicarbonyl compounds that react with proteins to form advanced glycation end products (AGEs). The formation of AGEs leads to the crosslinking and aggregation of proteins contributing to lens aging and cataract formation. To inhibit AGE formation, we developed a disulfide compound linking GSH diester and mercaptoethylguanidine, and we named it carboxitin. Bovine lens organ cultured with carboxitin showed higher levels of GSH and mercaptoethylguanidine in the lens nucleus. Carboxitin inhibited erythrulose-mediated mouse lens protein crosslinking, AGE formation and the formation of 3-deoxythreosone, a major ascorbate-derived AGE precursor in the human lens. Carboxitin inhibited the glycation-mediated increase in stiffness in organ-cultured mouse lenses measured using compressive mechanical strain. Delivery of carboxitin into the lens increases GSH levels, traps dicarbonyl compounds and inhibits AGE formation. These properties of carboxitin could be exploited to develop a therapy against the formation of AGEs and the increase in stiffness that causes presbyopia in aging lenses.


Asunto(s)
Glutatión/análogos & derivados , Glutatión/síntesis química , Cristalino/efectos de los fármacos , Animales , Bovinos , Productos Finales de Glicación Avanzada , Glicosilación , Cristalino/fisiología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Tetrosas/metabolismo , Células Tumorales Cultivadas
14.
Anal Bioanal Chem ; 413(5): 1337-1351, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410976

RESUMEN

Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.


Asunto(s)
Sustancias para la Guerra Química/efectos adversos , Glutatión/análogos & derivados , Guanina/análogos & derivados , Gas Mostaza/análogos & derivados , Animales , Línea Celular , Sustancias para la Guerra Química/análisis , Cromatografía Líquida de Alta Presión/métodos , Exposición a Riesgos Ambientales/efectos adversos , Glutatión/efectos adversos , Guanina/efectos adversos , Humanos , Queratinocitos/efectos de los fármacos , Ratones , Gas Mostaza/efectos adversos , Gas Mostaza/análisis , Piel/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , Pruebas de Toxicidad/métodos
15.
Jpn J Clin Oncol ; 51(2): 218-227, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33051668

RESUMEN

OBJECTIVE: Two phase I studies of darinaparsin including Japanese and Korean patients with relapsed/refractory peripheral T-cell lymphoma were performed to evaluate its safety (primary purpose), efficacy and pharmacokinetic profile (ClinicalTrials.gov: NCT01435863 and NCT01689220). METHODS: Patients received intravenous darinaparsin for 5 consecutive days at 200 mg/m2/day in 4-week cycles, 300 mg/m2/day in 4-week cycles or 300 mg/m2/day in 3-week cycles. RESULTS: Seventeen Japanese and 6 Korean patients were enrolled and treated. Drug-related adverse events developed in 18 patients (78%). Dose-limiting toxicity, grade 3 hepatic dysfunction, was reported on Day 15 of cycle 1 in 1 Japanese patient who received 300 mg/m2/day. The most common drug-related, grade ≥ 3 adverse events were lymphopenia (9%), neutropenia (9%) and thrombocytopenia (9%). No deaths occurred. In 14 evaluable patients, 1 and 3 patients had complete response and partial response, respectively. The plasma concentration-time profiles of arsenic, a surrogate marker for darinaparsin, were similar between Japanese and Korean patients. No significant difference was found in its pharmacokinetic profile. CONCLUSIONS: These data indicate the good tolerability and potential efficacy of darinaparsin in patients with relapsed/refractory peripheral T-cell lymphoma. Darinaparsin 300 mg/m2/day for 5 consecutive days in 3-week cycles is the recommended regimen for phase II study.


Asunto(s)
Arsenicales/uso terapéutico , Glutatión/análogos & derivados , Linfoma de Células T Periférico/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Arsenicales/administración & dosificación , Arsenicales/efectos adversos , Arsenicales/farmacocinética , Femenino , Glutatión/administración & dosificación , Glutatión/efectos adversos , Glutatión/farmacocinética , Glutatión/uso terapéutico , Humanos , Japón , Masculino , Persona de Mediana Edad , República de Corea , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
16.
Handb Exp Pharmacol ; 264: 71-91, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32767141

RESUMEN

Glutathione S-transferase P (GSTP) is a component of a complex series of pathways that provide cellular redox homeostasis. It is an abundant protein in certain tumors and is over-expressed in cancer drug resistance. It has diverse cellular functions that include, thiolase activities with small electrophilic agents or susceptible cysteine residues on the protein to mediate S-glutathionylation, and chaperone binding with select protein kinases. Preclinical and clinical testing of a nanomolar inhibitor of GSTP, TLK199 (Telintra; Ezatiostat) has indicated a role for the enzyme in hematopoiesis and utility for the drug in the treatment of patients with myelodysplastic syndrome.


Asunto(s)
Glutatión Transferasa , Neoplasias , Glutatión/análogos & derivados , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Unión Proteica
17.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769276

RESUMEN

Functions of selenium are diverse as antioxidant, anti-inflammation, increased immunity, reduced cancer incidence, blocking tumor invasion and metastasis, and further clinical application as treatment with radiation and chemotherapy. These functions of selenium are mostly related to oxidation and reduction mechanisms of selenium metabolites. Hydrogen selenide from selenite, and methylselenol (MSeH) from Se-methylselenocyteine (MSeC) and methylseleninicacid (MSeA) are the most reactive metabolites produced reactive oxygen species (ROS); furthermore, these metabolites may involve in oxidizing sulfhydryl groups, including glutathione. Selenite also reacted with glutathione and produces hydrogen selenide via selenodiglutathione (SeDG), which induces cytotoxicity as cell apoptosis, ROS production, DNA damage, and adenosine-methionine methylation in the cellular nucleus. However, a more pronounced effect was shown in the subsequent treatment of sodium selenite with chemotherapy and radiation therapy. High doses of sodium selenite were effective to increase radiation therapy and chemotherapy, and further to reduce radiation side effects and drug resistance. In our study, advanced cancer patients can tolerate until 5000 µg of sodium selenite in combination with radiation and chemotherapy since the half-life of sodium selenite may be relatively short, and, further, selenium may accumulates more in cancer cells than that of normal cells, which may be toxic to the cancer cells. Further clinical studies of high amount sodium selenite are required to treat advanced cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Selenito de Sodio/uso terapéutico , Glutatión/análogos & derivados , Glutatión/metabolismo , Humanos , Metanol/análogos & derivados , Metanol/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Compuestos de Organoselenio/metabolismo , Compuestos de Selenio/metabolismo , Selenito de Sodio/metabolismo
18.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502284

RESUMEN

Metallo-ß-lactamases (MBLs) are class B ß-lactamases from the metallo-hydrolase-like MBL-fold superfamily which act on a broad range of ß-lactam antibiotics. A previous study on BLEG-1 (formerly called Bleg1_2437), a hypothetical protein from Bacillus lehensis G1, revealed sequence similarity and activity to B3 subclass MBLs, despite its evolutionary divergence from these enzymes. Its relatedness to glyoxalase II (GLXII) raises the possibility of its enzymatic promiscuity and unique structural features compared to other MBLs and GLXIIs. This present study highlights that BLEG-1 possessed both MBL and GLXII activities with similar catalytic efficiencies. Its crystal structure revealed highly similar active site configuration to YcbL and GloB GLXIIs from Salmonella enterica, and L1 B3 MBL from Stenotrophomonas maltophilia. However, different from GLXIIs, BLEG-1 has an insertion of an active-site loop, forming a binding cavity similar to B3 MBL at the N-terminal region. We propose that BLEG-1 could possibly have evolved from GLXII and adopted MBL activity through this insertion.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Tioléster Hidrolasas/química , beta-Lactamasas/química , Ampicilina/química , Ampicilina/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Glutatión/análogos & derivados , Glutatión/química , Glutatión/metabolismo , Simulación del Acoplamiento Molecular , Filogenia , Conformación Proteica , Stenotrophomonas maltophilia/enzimología
19.
Biochem Biophys Res Commun ; 522(1): 259-263, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31759632

RESUMEN

Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , NADP/metabolismo , Oxidorreductasas de Alcohol/química , Dominio Catalítico , Glutatión/análogos & derivados , Glutatión/metabolismo , Humanos , Especificidad por Sustrato
20.
Biochem Biophys Res Commun ; 533(3): 325-331, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958252

RESUMEN

Busulfan is an alkylating agent used in chemotherapy conditioning regimens prior to hematopoietic stem cell transplantation (HSCT). However, its administration is associated with a great risk of adverse toxicities, which have been historically attributed to busulfan's mechanism of non-specific DNA alkylation. A phase II generated metabolite of busulfan, EdAG (γ-glutamyldehydroalanylglycine), is a dehydroalanine analog of glutathione (GSH) with an electrophilic moiety, suggesting it may bind to proteins and disrupt biological function. However, EdAG's reactions with common cellular thiols such as glutathione (GSH) and l-cysteine are understudied, along with possible inhibition of glutathionylation-dependent enzymes (with active site cysteine residues). We established a physiologically-relevant in vitro model to readily measure thiol loss over time. Using this model, we compared the apparent rates of thiol depletion in the presence of EdAG or arecoline, a toxic constituent of the areca (betel) nut and known GSH depletor. Simulated kinetic modeling revealed that the mean (±SE) alpha (α) second order rate constants describing GSH and l-cysteine depletion in the presence of EdAG were 0.00522 (0.00845) µM-1∙min-1 and 0.0207 (0.00721) µM-1∙min-1, respectively; in the presence of arecoline, the apparent rates of depletion were 0.0619 (0.009) µM-1∙min-1 and 0.2834 (0.0637) µM-1∙min-1 for GSH and l-cysteine, respectively. Under these experimental conditions, we conclude that EdAG was a weaker electrophile than arecoline. Arecoline and EdAG both depleted apparent l-cysteine concentrations to a much greater extent than GSH, approximately 4.58-fold and 3.97-fold change greater, respectively. EdAG modestly inhibited (∼20%) the human thioredoxin-1 (hTrx-1) catalyzed reduction of insulin with a mean IC50 of 93 µM [95% CI: 78.6-110 µM). In summary, EdAG's ability to spontaneously react with endogenous thiols and inhibit hTrx-1 are potentially biochemically relevant in humans. These findings continue to support the growing concept that EdAG, an underrecognized phase II metabolite of busulfan, plays a role in untoward cellular toxicities during busulfan pharmacotherapy.


Asunto(s)
Antineoplásicos Alquilantes/química , Arecolina/química , Busulfano/química , Glutatión/análogos & derivados , Glutatión/química , Tiorredoxinas/química , Arecolina/antagonistas & inhibidores , Biotransformación , Cisteína/antagonistas & inhibidores , Cisteína/química , Glutatión/antagonistas & inhibidores , Humanos , Cinética , Soluciones , Tiorredoxinas/antagonistas & inhibidores , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA