Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.805
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 114(2): 371-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775989

RESUMEN

Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Hidroxiprolina/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Flores/genética , Polen/metabolismo , Glicósidos/metabolismo
2.
Plant Cell Rep ; 43(8): 202, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073636

RESUMEN

KEY MESSAGE: E1 holoenzyme was extensively Hyp-O-glycosylated at the proline rich linker region in plants, which substantially increased the molecular size and improved the enzymatic digestibility of the biomass of transgenic plants. Thermophilic E1 endo-1,4-ß-glucanase derived from Acidothermus cellulolyticus has been frequently expressed in planta to reconstruct the plant cell wall to overcome biomass recalcitrance. However, the expressed holoenzyme exhibited a larger molecular size (~ 100 kDa) than the theoretical one (57 kDa), possibly due to posttranslational modifications in the recombinant enzyme within plant cells. This study investigates the glycosylation of the E1 holoenzyme expressed in tobacco plants and determines its impact on enzyme activity and biomass digestibility. The E1 holoenzyme, E1 catalytic domain (E1cd) and E1 linker (E1Lk) were each expressed in tobacco plants and suspension cells. The accumulation of holoenzyme was 2.0- to 2.3- times higher than that of E1cd. The proline-rich E1Lk region was extensively hydroxyproline-O-glycosylated with arabinogalactan polysaccharides. Compared with E1cd, the holoenzyme displayed a broader optimal temperature range (70 to 85 ºC). When grown in greenhouse, the expression of E1 holoenzyme induced notable phenotypic changes in plants, including delayed flowering and leaf variegation post-flowering. However, the final yield of plant biomass was not significantly affected. Finally, plant biomass engineering with E1 holoenzyme showed 1.7- to 1.8-fold higher saccharification efficiency than the E1cd lines and 2.4- to 2.7-fold higher than the wild-type lines, which was ascribed to the synergetic action of the E1Lk and cellulose binding module in reducing cell wall recalcitrance.


Asunto(s)
Biomasa , Celulasa , Hidroxiprolina , Nicotiana , Plantas Modificadas Genéticamente , Glicosilación , Celulasa/metabolismo , Celulasa/genética , Nicotiana/genética , Nicotiana/metabolismo , Hidroxiprolina/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Caldicellulosiruptor/genética , Caldicellulosiruptor/metabolismo
3.
Skin Res Technol ; 30(8): e13896, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39128890

RESUMEN

BACKGROUND: Dorema aucheri gum (DAG) is a bitter flavonoid gum widely used for numerous medicinal purposes including wound recovery. The present work investigates the acute toxicity and wound-healing effects of DAG in excisional skin injury in rats. MATERIALS AND METHODS: Sprague Dawley rats (24) were clustered into four groups, each rat had a full-thickness excisional dorsal neck injury (2.00 cm) and addressed with 0.2 mL of the following treatments for 15 days: Group A (vehicle), rats addressed with normal saline; Group B, rats received intrasite gel; C and D, rats addressed with 250 and 500 mg/kg of DAG, respectively. RESULTS: The results revealed the absence of any toxic signs in rats who received oral dosages of 2 and 5 g/kg of DAG. Wound healing was significantly accelerated following DAG treatments indicated by smaller open areas and higher wound contraction percentages compared to vehicle rats. Histological evaluation revealed higher fibroblast formation, collagen deposition, and noticeably lower inflammatory cell infiltration in granulated skin tissues of DAG-addressed rats compared to vehicle rats. DAG treatment caused significant modulation of immunohistochemical proteins (decreased Bax and increased HSP 70) and inflammatory mediators (reduced TNF-α, IL-6, and magnified IL-10), which were significantly varied compared to vehicle rats. Moreover, topical DAG treatment led to significant upregulation of the hydroxyproline (HDX) (collagen) and antioxidant content. At the same time, decreased the lipid peroxidation (MDA) levels in healed tissues obtained from DAG-treated rats. CONCLUSION: The present wound contraction by DAG might be linked with the modulatory effect of its phytochemicals (polysaccharides, flavonoids, and phenolic) on the cellular mechanisms, which justify their folkloric use and provokes further investigation as therapeutic drug additives for wound contraction.


Asunto(s)
Flavonoides , Piel , Cicatrización de Heridas , Proteína X Asociada a bcl-2 , Animales , Masculino , Ratas , Proteína X Asociada a bcl-2/metabolismo , Flavonoides/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Hidroxiprolina/metabolismo , Gomas de Plantas/farmacología , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/lesiones , Piel/patología , Piel/metabolismo , Cicatrización de Heridas/efectos de los fármacos
4.
BMC Pulm Med ; 24(1): 457, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285370

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related disease severely affecting life quality with its prevalence rising as the population ages, yet there is still no effective treatment available. Cell therapy has emerged as a promising option for IPF, however, the absence of mature and stable animal models for IPF immunodeficiency hampers preclinical evaluations of human cell therapies, primarily due to rapid immune clearance of administered cells. This study aims to establish a reliable pulmonary fibrosis (PF) model in immunodeficient mice that supports autologous cell therapy and to investigate underlying mechanism. METHODS: We utilized thirty 5-week-old male NOD/SCID mice, categorizing them into three age groups: 12weeks, 32 weeks and 43 weeks, with 6 mice euthanized randomly from each cohort for lung tissue analysis. We assessed fibrosis using HE staining, Masson's trichrome staining, α-SMA immunohistochemistry and hydroxyproline content measurement. Further, ß-galactosidase staining and gene expression analysis of MMP9, TGF-ß1, TNF-α, IL-1ß, IL-6, IL-8, SOD1, SOD2, NRF2, SIRT1, and SIRT3 were performed. ELISA was employed to quantify protein levels of TNF-α, TGF-ß1, and IL-8. RESULTS: When comparing lung tissues from 32-week-old and 43-week-old mice to those from 12-week-old mice, we noted a marked increase in inflammatory infiltration, fibrosis severity, and hydroxyproline content, alongside elevated expression levels of α-SMA and MMP9. Notably, the degree of fibrosis intensified with age. Additionally, ß-galactosidase staining became more pronounced in older mice. Quantitative PCR analyses revealed age-related, increases in the expression of senescence markers (GLB1, P16, P21), and proinflammatory genes (TGF-ß1, TNF-α, IL-1ß, IL-6, and IL-8). Conversely, the expression of anti-oxidative stress-related genes (SOD1, SOD2, NRF2, SIRT1, and SIRT3) declined, showing statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001). ELISA results corroborated these findings, indicating a progressive rise in the protein levels of TGF-ß1, TNF-α, and IL-8 as the mice aged. CONCLUSIONS: The findings suggest that NOD/SCID mice aged 32 weeks and 43 weeks effectively model pulmonary fibrosis in an elderly context, with the disease pathogenesis likely driven by age-associated inflammation and oxidative stress.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Ratones Endogámicos NOD , Ratones SCID , Sirtuina 1 , Animales , Ratones , Masculino , Sirtuina 1/metabolismo , Sirtuina 1/genética , Pulmón/patología , Pulmón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Sirtuina 3/genética , Sirtuina 3/metabolismo , Hidroxiprolina/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Actinas/metabolismo , Actinas/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo
5.
J Biol Chem ; 298(3): 101708, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150746

RESUMEN

Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-ß-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-ß-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.


Asunto(s)
Aminoácido Oxidorreductasas , Hidroxibutirato Deshidrogenasa , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Animales , Embrión de Pollo , Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidroxibutirato Deshidrogenasa/química , Hidroxibutirato Deshidrogenasa/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Mamíferos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Conejos , Ratas
6.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310758

RESUMEN

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Asunto(s)
Fibrosis Pulmonar Idiopática , Vanadio , Masculino , Humanos , Ratones , Animales , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Vanadio/toxicidad , Vanadio/metabolismo , Ratones Endogámicos C57BL , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inflamación/patología , Mamíferos
7.
Hum Reprod ; 38(11): 2187-2195, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37697661

RESUMEN

STUDY QUESTION: Is the abundance of certain biochemical compounds in human cumulus cells (CCs) related to oocyte quality? SUMMARY ANSWER: Malonate, 5-oxyproline, and erythronate were positively associated with pregnancy potential. WHAT IS KNOWN ALREADY: CCs are removed and discarded prior to ICSI, thereby constituting an interesting biological material on which to perform molecular analysis aimed to predict oocyte developmental competence. Mitochondrial DNA content and transcriptional analyses in CC have been shown to provide a poor predictive value of oocyte competence, but the untargeted analysis of biochemical compounds (metabolomics) has been unexplored. STUDY DESIGN, SIZE, DURATION: CCs were obtained from three groups of cumulus-oocyte complexes (COCs) of known developmental potential: oocytes not developing to blastocyst following ICSI (Bl-); oocytes developing to blastocyst but failing to establish pregnancy following embryo transfer (P-); and oocytes developing to blastocyst able to establish a pregnancy (P+). Metabolomics analyses were performed on 12 samples per group, each sample comprising the CC recovered from a single COC. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human CC samples were obtained from IVF treatments. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Metabolomics analysis was performed by ultra-high performance liquid chromatography-tandem mass spectroscopy. MAIN RESULTS AND THE ROLE OF CHANCE: The analysis identified 98 compounds, five of which were differentially abundant (P < 0.05) between groups: asparagine, proline, and malonate were less abundant in P- compared to Bl-, malonate and 5-oxoproline were less abundant in P- group compared to P+, and erythronate was less abundant in Bl- group compared to P+. No significant association between the abundance of the compounds identified and donor age or BMI was noted. LIMITATIONS, REASONS FOR CAUTION: Data dispersion and the lack of coherence between developmental groups preclude the direct use of metabolic markers in clinical practice, where the uterine environment plays a major role in pregnancy outcome. The abundance of other compounds not detected by the analysis may be associated with oocyte competence. As donors were lean (only two with BMI > 30 kg/m2) and young (<34 years old), a possible effect of obesity or advanced age on the CC metabolome could not be determined. WIDER IMPLICATIONS OF THE FINDINGS: The abundance of malonate, 5-oxyproline, and erythronate in CC was significantly higher in COCs ultimately establishing pregnancy, providing clues on the pathways required for oocyte competence. The untargeted analysis uncovered the presence of compounds that were not expected in CC, such as ß-citrylglutamate and the neurotransmitter N-acetyl-aspartyl-glutamate, which may play roles in chromatin remodeling and signaling, respectively. STUDY FUNDING/COMPETING INTEREST(S): Research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by Madrid Region Government. The authors declare no competing interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Células del Cúmulo , Oocitos , Femenino , Humanos , Embarazo , Adulto , Células del Cúmulo/metabolismo , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Oocitos/metabolismo , Oogénesis , Malonatos/metabolismo , Malonatos/farmacología
8.
Biomarkers ; 28(2): 160-167, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36420657

RESUMEN

Context: Oxidative stress leads to deleterious processes in the liver that resulted in liver diseases.Objective: To evaluate antioxidant activity and hepatoprotective potential of ethanolic leaves extract of Citrus reticulate against hepatic dysfunction induced by thioacetamide (TAA).Materials and Methods: Flavonoid constituents were isolated from the ethanol extract by chromatographic techniques and identified by the spectroscopic analyses. Antioxidant activity was determined using DPPH assay. Hepatotoxicity was induced in rats via intraperitoneal injection of TAA and the ethanol extract was orally administrated at a dose of 100 mg/kg/day for four weeks. Serum biomarkers, hepatic antioxidant enzymes, tumour necrosis factor-alpha (TNF-α), hepatic hydroxyproline levels, and histopathology were examined.Results: Ten known flavonoids were identified, among of them, 6,3`-dimethoxyluteolin and 8,3`-dimethoxyluteolin possessed the highest antioxidant activity. The substantially elevated serum enzymatic levels of ALT, ALP, and bilirubin were found to be restored towards normalisation significantly by the plant extract. Furthermore, the markers including MDA, GSH, SOD, NO, and protein carbonyl which were close to oxidative damage, were restored. Meanwhile, the extract treatment decreased TNF-α level and also was able to reverse the induced fibrosis by significantly reducing the hydroxyproline content. Moreover, histopathological studies further substantiate the protective effect of the extract.Conclusion: C. reticulate leaves extract is a rich source of phytochemicals with in vitro and in vivo protective effects.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Citrus , Ratas , Animales , Antioxidantes/metabolismo , Tioacetamida/toxicidad , Tioacetamida/análisis , Tioacetamida/metabolismo , Flavonoides/farmacología , Flavonoides/análisis , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Citrus/metabolismo , Hidroxiprolina/análisis , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Hígado/metabolismo , Extractos Vegetales/química , Estrés Oxidativo , Hojas de la Planta/química , Etanol/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
9.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 172-178, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37329529

RESUMEN

This study aimed to investigate the mechanism of lung tissue YKL-40 promoting the interstitial transformation of alveolar epithelial cells in mice with idiopathic pulmonary fibrosis and its effect on the level of TGF-ß1. For this purpose, Forty SPF SD mice were randomly divided into 4 groups. They were the blank control group (CK group), virus-negative control group (YKL-40-NC group), YKL-40 knockdown group (YKL-40-inhibitor group) and YKL-40 overexpression group (YKL-40-mimics group), respectively. The mRNA expressions of alveolar epithelial cell mesenchymal transformation-related proteins, pulmonary fibrosis-related factors and TGF-ß1-related pathway proteins in the above four groups of mice were compared to determine the mechanism of the promotion of alveolar epithelial cell mesenchymal transformation by YKL-40 in the lung tissues of mice with idiopathic pulmonary fibrosis and the effect of YKL-40 on the level of TGF-ß1. The results showed that in terms of lung wet/dry weight ratio, the YKL-40-NC group, YKL-40-inhibitor group and YKL-40-mimics group were significantly increased compared with the CK group (P<0.05). About YKL-40 protein expression, compared with the CK group, AOD value and YKL-40 protein expression in the YKL-40-NC group, YKL-40-inhibitor group and YKL-40-mimics group were significantly increased (P<0.05), and compared with YKL-40-NC group, The AOD value and YKL-40 protein expression in YKL-40-inhibitor group were significantly decreased, while the AOD value and YKL-40 protein expression in YKL-40-mimics group were significantly increased (P<0.05), suggesting successful lentivirus transfection. Compared with the CK group, ß-catenin and E-cadherin in the alveolar epithelial cells were significantly increased, while Pro-SPC was significantly decreased (P<0.05). The mRNA expression of pulmonary fibrosis-related factors showed that compared with the CK group, the mRNA expression of vimimin and hydroxyproline was significantly increased, while the mRNA expression of E-cadherin was decreased (P<0.05). However, the mRNA expressions of vimimin and hydroxyproline in the YKL-40-inhibitor group were significantly decreased, but the mRNA expression of E-cadherin was significantly increased. Compared with CK group, the protein expressions of TGF-ß1, Smad3, Smad7 and α-Sma in the CK group were significantly increased (P<0.05). The protein expressions of TGF-ß1, Smad3, Smad7 and α-SMA in the YKL-40-mimics group were significantly increased, but the protein expressions of TGF-ß1, Smad3, Smad7 and α-SMA in YKL-40-inhibitor group were significantly decreased (P<0.05). In general, overexpression of YKL-40 can promote the progression of pulmonary fibrosis and the interstitial transformation of alveolar epithelial cells in mice with idiopathic fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Cadherinas/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Hidroxiprolina/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
10.
Biol Pharm Bull ; 46(10): 1421-1426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779043

RESUMEN

Despite the fact that liver fibrosis is an intractable disease with a poor prognosis, effective therapeutic agents are not available. In this study, we focused on bone morphogenetic factor 7 (BMP7) that inhibits transforming growth factor (TGF)-ß signaling, which is involved in liver fibrosis. We prepared an albumin-fused BMP7 (HSA-BMP7) that is retained in the blood and evaluated its inhibitory effect on liver fibrosis. Bile duct ligated mice were used as an acute liver fibrosis model, and carbon tetrachloride-induced liver fibrosis mice were used as a chronic model. All mice were administered HSA-BMP7 once per week. In the mice with bile duct ligation, the administration of HSA-BMP7 significantly suppressed the infiltration of inflammatory cells, the area of fibrosis around the bile duct, and decreased in the level of hydroxyproline as compared with saline administration. The mRNA expression of TGF-ß and its downstream fibrosis-associated genes (α-SMA and Col1a2) were also suppressed by the administration of HSA-BMP7. In the carbon tetrachloride-induced liver fibrosis mice, the HSA-BMP7 administration significantly decreased the hepatic fibrosis area and the level of hydroxyproline. Based on these results, it appears that HSA-BMP7 has the potential for serving as a therapeutic agent for the treatment of liver fibrosis.


Asunto(s)
Proteína Morfogenética Ósea 7 , Cirrosis Hepática , Animales , Ratones , Albúminas , Tetracloruro de Carbono , Hidroxiprolina/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Morfogenética Ósea 7/farmacología
11.
Mar Drugs ; 21(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38132929

RESUMEN

The objective of this study was to investigate the effect of low-molecular-weight fish collagen (valine-glycine-proline-hydroxyproline-glycine-proline-alanine-glycine; LMWCP) on H2O2- or LPS-treated primary chondrocytes and monoiodoacetate (MIA)-induced osteoarthritis rat models. Our findings indicated that LMWCP treatment exhibited protective effects by preventing chondrocyte death and reducing matrix degradation in both H2O2-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. This was achieved by increasing the levels of aggrecan, collagen type I, collagen type II, TIMP-1, and TIMP-3, while simultaneously decreasing catabolic factors such as phosphorylation of Smad, MMP-3, and MMP-13. Additionally, LMWCP treatment effectively suppressed the activation of inflammation and apoptosis pathways in both LPS-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. These results suggest that LMWCP supplementation ameliorates the progression of osteoarthritis through its direct impact on inflammation and apoptosis in chondrocytes.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratas , Animales , Condrocitos , Hidroxiprolina/efectos adversos , Hidroxiprolina/metabolismo , Glicina/farmacología , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos/farmacología , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/prevención & control , Inflamación/metabolismo , Colágeno Tipo II/farmacología , Péptidos/farmacología , Valina/efectos adversos , Valina/metabolismo , Células Cultivadas
12.
Chem Biodivers ; 20(12): e202301529, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955210

RESUMEN

The study's objective is to clarify the probable mechanisms underlying the wound-healing properties of Helianthemum canum L. (Cistaceae), a traditional anti-inflammatory and wound-healing medicine. LC/MS-MS was used to perform phytochemical analyses on a 70 % methanol extract of the plant's aerial parts. In vivo, linear incision and circular excision models were used to evaluate the wound healing activity. For anti-inflammatory effect, in vivo acetic acid capillary permeability assay and in vitro Interleukin 1, Interleukin 6, and Interferon É£ levels in LPS-induced FR skin fibroblast cell line were also evaluated. The extract significantly improved wound healing in experimental models, with tensile strength values of 27.8 % and a contraction value of 35.09 %. Histopathological examinations, hydroxyproline estimation, hyaluronidase, collagenase, and elastase enzyme inhibitory assays confirmed wound healing potential. Inflammatory cytokines were significantly inhibited in the LPS-induced FR cell line, with the highest effect seen on IL-6 (34.5±2.12 pg/mL). This study offered the first concrete proof that H. canum can be used to treat wounds by suggesting that the myricetin and quinic acid content identified by LCMS-MS analysis may be accountable for the effect of H. canum on wound contraction and hydroxyproline production.


Asunto(s)
Cistaceae , Extractos Vegetales , Ratas , Animales , Extractos Vegetales/química , Ratas Sprague-Dawley , Hidroxiprolina/metabolismo , Lipopolisacáridos/farmacología , Cicatrización de Heridas , Fitoquímicos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cistaceae/metabolismo
13.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108094

RESUMEN

A number of food components, such as polyphenols and phytonutrients, have immunomodulatory effects. Collagen has various bioactivities, such as antioxidative effects, the promotion of wound healing, and relieving symptoms of bone/joint disease. Collagen is digested into dipeptides and amino acids in the gastrointestinal tract and subsequently absorbed. However, the difference in immunomodulatory effects between collagen-derived dipeptides and amino acids is unknown. To investigate such differences, we incubated M1 macrophages or peripheral blood mononuclear cells (PBMC) with collagen-derived dipeptides (hydroxyproline-glycine (Hyp-Gly) and proline-hydroxyproline (Pro-Hyp)) and amino acids (proline (Pro), hydroxyproline (Hyp), and glycine (Gly)). We first investigated the dose dependency of Hyp-Gly on cytokine secretion. Hyp-Gly modulates cytokine secretion from M1 macrophages at 100 µM, but not at 10 µM and 1 µM. We then compared immunomodulatory effects between dipeptides and mixtures of amino acids on M1 macrophages and PBMC. There was, however, no difference in cytokine secretion between dipeptides and their respective amino acids. We conclude that collagen-derived dipeptides and amino acids have immunomodulatory effects on M1-differentiated RAW264.7 cells and PBMC and that there is no difference in the immunomodulatory effects between dipeptides and amino acids.


Asunto(s)
Aminoácidos , Dipéptidos , Dipéptidos/farmacología , Dipéptidos/química , Hidroxiprolina/metabolismo , Aminoácidos/farmacología , Leucocitos Mononucleares/metabolismo , Colágeno/metabolismo , Prolina/farmacología , Prolina/química , Glicina , Citocinas
14.
Zhonghua Nei Ke Za Zhi ; 62(7): 841-849, 2023 Jul 01.
Artículo en Zh | MEDLINE | ID: mdl-37394854

RESUMEN

Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) µg/mg vs. (0.974±0.060) µg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) µg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.


Asunto(s)
Cannabinoides , Fibrosis Pulmonar , Ratones , Masculino , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Agonistas de Receptores de Cannabinoides/efectos adversos , Agonistas de Receptores de Cannabinoides/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacología , Colágeno Tipo III/metabolismo , Colágeno Tipo III/farmacología , Hidroxiprolina/análisis , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Cloruro de Sodio/efectos adversos , Cloruro de Sodio/metabolismo , Ratones Endogámicos C57BL , Pulmón/patología , Cannabinoides/efectos adversos , Bleomicina/efectos adversos , Bleomicina/metabolismo , Colágeno/efectos adversos , Colágeno/metabolismo , Inflamación/patología , ARN Mensajero/metabolismo
15.
Eur Respir J ; 59(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34561295

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with few treatment options. The poor success in developing anti-IPF strategies has impelled researchers to reconsider the importance of the choice of animal model and assessment methodologies. Currently, it is still not settled whether the bleomycin-induced lung fibrosis mouse model finally returns to resolution. METHODS: This study aimed to follow the dynamic fibrotic features of bleomycin-treated mouse lungs over extended durations through a combination of the latest technologies (micro-computed tomography imaging and histological detection of degraded collagens) and traditional methods. In addition, we also applied immunohistochemistry to explore the distribution of all hydroxyproline-containing molecules. RESULTS: As determined by classical biochemical methods, total lung hydroxyproline contents reached a peak at 4 weeks after bleomycin injury and maintained a steady high level thereafter until the end of the experiments (16 weeks). This result seemed to partially contradict with the changes of other fibrosis evaluation parameters, which indicated a gradual degradation of collagens and a recovery of lung aeration after the fibrosis peak. This inconsistency was well reconciled by our data from immunostaining against hydroxyproline and fluorescent peptide staining against degraded collagen, together showing large amounts of hydroxyproline-rich degraded collagen fragments detained and enriched within the intracellular regions at 10 or 16 weeks rather than at 4 weeks after bleomycin treatment. CONCLUSIONS: Our present data not only offer respiratory researchers a new perspective towards the resolution nature of mouse lung fibrosis, but also remind them to be cautious when using the hydroxyproline content assay to evaluate the severity of fibrosis.


Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Humanos , Hidroxiprolina/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Microtomografía por Rayos X
16.
Cytokine ; 158: 156012, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030705

RESUMEN

Present study was conducted to undermine the wound healing potential of mangiferin vis a vis its molecular dynamics in immunocompromised excisional rat model. 120 rats were randomly and equally divided into five groups viz. group I (Healthy control), group II (Immunocompromised control), group III (Immunocompromised group treated with silver sulphadiazine), group IV (Immunocompromised group treated with 2.5 %Mangiferin) and group V (Immunocompromised group treated with 5 %Mangiferin). Immuno compromised state was achieved following intramuscular injection of Hydrocortisone @ 80 mg/kg body weight. Study was conducted for a period of 28 days. Six animals from each group were humanely sacrificed at weekly interval till day 28th of study. Planimetric analysis, biochemical studies viz. hydroxyproline assay, total protein and DNA content, antioxidative potential through LPO assay was done along with molecular studies involving expression profiling of IL1ß, TNFα and COX-2 and Immunohistochemistry of angiogenic marker i.e. VEGF was performed to undermine the pharmacodynamics of mangiferin. Histopathological studies including H&E and Masson's Trichome was also performed to study histoarchitectural changes in wound healing and reparative process following application of mangiferin ointment. Study revealed significant (P ≤ 0.05) reduction in wound area measurement and significant (P ≤ 0.05) increase in wound contraction (%) following mangiferin administration in immunocompromised rats. Hydroxyproline, DNA and total protein showed significant (P ≤ 0.05) increase in skin tissues of mangiferin treated immunocompromised rats. LPO assay revealed significant (P ≤ 0.05) reduction in mangiferin treated animals. Histopathological studies of skin tissues revealed complete restoration advocating grade III of healing in 2.5% mangiferin treated group. Higher expression and strong signal intensity of VEGF was noticed in 2.5% mangiferin treatment group along with significant (P ≤ 0.05) upregulation IL1ß and TNFα on day 7 in 2.5% mangiferin treatment group with significant (P ≤ 0.05) down regulation of COX-2 in mangiferin treatment group as compared to other groups i.e. group II and III. It is concluded from our study that mangiferin facilitates wound healing through improved wound closure, organized deposition of collagen deposition and granulation matrix formation.


Asunto(s)
Xantonas , Animales , Ciclooxigenasa 2/metabolismo , Glucósidos/farmacología , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Interleucina-1beta/metabolismo , Pomadas/metabolismo , Pomadas/farmacología , Ratas , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Xantonas/metabolismo , Xantonas/farmacología
17.
J Exp Bot ; 73(12): 3929-3945, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35383367

RESUMEN

In plant cells, linkage between the cytoskeleton, plasma membrane, and cell wall is crucial for maintaining cell shape. In highly polarized pollen tubes, this coordination is especially important to allow rapid tip growth and successful fertilization. Class I formins contain cytoplasmic actin-nucleating formin homology domains as well as a proline-rich extracellular domain and are candidate coordination factors. Here, using Arabidopsis, we investigated the functional significance of the extracellular domain of two pollen-expressed class I formins: AtFH3, which does not have a polar localization, and AtFH5, which is limited to the growing tip region. We show that the extracellular domain of both is necessary for their function, and identify distinct O-glycans attached to these sequences, AtFH5 being hydroxyproline-arabinosylated and AtFH3 carrying arabinogalactan chains. Loss of hydroxyproline arabinosylation altered the plasma membrane localization of AtFH5 and disrupted actin cytoskeleton organization. Moreover, we show that O-glycans differentially affect lateral mobility in the plasma membrane. Together, our results support a model of protein sub-functionalization in which AtFH5 and AtFH3, restricted to specific plasma membrane domains by their extracellular domains and the glycans attached to them, organize distinct subarrays of actin during pollen tube elongation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Forminas , Glicosilación , Hidroxiprolina/metabolismo , Polen/metabolismo , Tubo Polínico
18.
Transgenic Res ; 31(4-5): 553-565, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35978205

RESUMEN

Myostatin (MSTN), a member of the TGF-ß superfamily, negatively regulates muscle growth. MSTN inhibition has been known to cause a double-muscled phenotype in skeletal muscle and fibrosis reduction in the heart. However, the role of MSTN in the cardiac extracellular matrix (ECM) needs more studies in various species of animal models to draw more objective conclusions. The main objective of the present study was to investigate whether loss of MSTN affects the cardiac extracellular matrix in pigs. Three MSTN knockouts (MSTN-/-) and three wild type (WT) male pigs were generated by crossing MSTN ± heterozygous gilts and boars. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/- pigs. The morphometric analyses, including picrosirius red staining, immunofluorescent staining, and ultra-structural thickness examination of the endomysium, revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline, type I collagen (Col1A), and p-Smad3/Smad3 levels were significantly lower in MSTN-/- hearts in vivo. On the contrary, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A and activated Smad and AKT signaling pathways in vitro. The present study suggests that inhibition of MSTN decreases cardiac extracellular matrix.


Asunto(s)
Miostatina , Proteínas Proto-Oncogénicas c-akt , Animales , Colágeno Tipo I/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Hidroxiprolina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miostatina/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
19.
Cell Mol Biol (Noisy-le-grand) ; 68(6): 48-55, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36227678

RESUMEN

it was aimed to discuss the effect of moxibustion (Mox) combined with Bu Fei Qu Yu (BFQY) decoction under the nuclear factor-κB (NF-κB)/transforming growth factor-ß1 (TGF-ß1)/Smads signaling pathway in the treatment of pulmonary fibrosis (PF). The PF rat models were prepared with bleomycin (BLM). They were divided into the normal (Nor) group, the PF model group (BLM puncture perfusion), the Mox group (grain-sized Mox at the back-shu points and Xuxiao points), the BFQY group (intragastrical BFQY decoction), and the Mox combined with BFQY decoction (Mox+BFQY) group. Lung tissue sections were prepared, and the hematoxylin-eosin (HE) staining and Masson staining were performed to observe the inflammatory response and the degree of PF. The contents of hydroxyproline (HYP), glutathione (GSH), and malondialdehyde (MDA), and the expressions of NF-κB p65, TGF-ß1, Smad2, and Smad7 in lung tissues were detected. Compared with those in the Nor group, the inflammatory response score, PF degree score, HYP, GSH, and MDA contents, NF-κB p65, TGF-ß1, and Smad2 expressions were significantly increased in the PF group, but Smad7 expression decreased (P<0.05). The above symptoms were significantly improved in the Mox, BFQY, and Mox+ BFQY groups (P<0.05). The effect was more remarkable in the Mox+BFQY group, and there was no significant difference in each index compared with those in the Nor group (P>0.05). Thus, the combined therapy of Mox and decoction had an effect on PF through the NF-κB/TGF-ß1/Smads pathway.


Asunto(s)
Moxibustión , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Eosina Amarillenta-(YS)/efectos adversos , Glutatión , Hematoxilina/farmacología , Hidroxiprolina/efectos adversos , Hidroxiprolina/metabolismo , Malondialdehído , FN-kappa B/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/terapia , Ratas , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
20.
J Clin Periodontol ; 49(10): 1067-1078, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35713233

RESUMEN

AIM: Periodontitis (PD) is the sixth most prevalent disease around the world and is involved in the development and progression of multiple systemic diseases. Previous studies have reported that PD may aggravate liver injuries. The objective of this study was to investigate whether and how PD affects liver fibrosis. MATERIALS AND METHODS: Ligature-induced PD (LIP) was induced in male C57/B6J mice, and sub-gingival plaques (PL) from patients with PD were applied to mouse teeth. Liver fibrosis was induced by carbon tetrachloride (CCl4 ) injection. The mice were randomly divided into six groups: Oil, Oil+LIP, Oil+LIP+PL, CCl4 , CCl4 +LIP, and CCl4 +LIP+PL. Alveolar bone resorption was evaluated by methylene blue staining. Hepatic function was analysed by serum alanine aminotransferase and hepatic hydroxyproline. Picrosirius red and α-smooth muscle actin (SMA) staining were used to evaluate the fibrotic area. RNA sequencing and quantitative RT-PCR were used to measure gene expression. Western blotting was used to measure protein levels. Flow cytometry was used to analyse the accumulation of immune cells. Mouse microbiota were analysed using 16S rRNA gene sequencing. RESULTS: Mice in the CCl4 +LIP+PL group displayed higher serum alanine aminotransferase and hepatic hydroxyproline as well as more Picrosirius red-positive and α-SMA-positive areas in liver samples than those of the CCl4 group, suggesting that PD (LIP+PL) aggravated CCl4 -induced hepatic dysfunction and liver fibrosis. Consistently, the expression of fibro-genic genes and the protein levels of transforming growth factor ß were much higher in the CCl4 +LIP+PL group than in the CCl4 group. Flow cytometry revealed that PD increased the accumulation of immune cells, including Kupffer cells, B cells, and Th17 cells, in the liver of mice with CCl4 treatment. PD also increased the expression of inflammatory genes and activated pro-inflammatory nuclear factor-kappa B pathway in the livers of CCl4 -injected mice. Moreover, PD altered both oral and liver microbiota in CCl4 -injected mice. CONCLUSIONS: PD aggravates CCl4 -induced hepatic dysfunction and fibrosis in mice, likely through the increase of inflammation and alteration of microbiota in the liver.


Asunto(s)
Cirrosis Hepática , Microbiota , Periodontitis , Actinas , Alanina Transaminasa , Animales , Compuestos Azo , Tetracloruro de Carbono/efectos adversos , Hidroxiprolina/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Azul de Metileno , Ratones , Periodontitis/complicaciones , ARN Ribosómico 16S , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA