Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.683
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33848425

RESUMEN

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Asunto(s)
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuinas/química , Sirtuinas/metabolismo , Acetilación , Acilación , Animales , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
2.
Cell ; 182(1): 127-144.e23, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502394

RESUMEN

Before zygotic genome activation (ZGA), the quiescent genome undergoes reprogramming to transition into the transcriptionally active state. However, the mechanisms underlying euchromatin establishment during early embryogenesis remain poorly understood. Here, we show that histone H4 lysine 16 acetylation (H4K16ac) is maintained from oocytes to fertilized embryos in Drosophila and mammals. H4K16ac forms large domains that control nucleosome accessibility of promoters prior to ZGA in flies. Maternal depletion of MOF acetyltransferase leading to H4K16ac loss causes aberrant RNA Pol II recruitment, compromises the 3D organization of the active genomic compartments during ZGA, and causes downregulation of post-zygotically expressed genes. Germline depletion of histone deacetylases revealed that other acetyl marks cannot compensate for H4K16ac loss in the oocyte. Moreover, zygotic re-expression of MOF was neither able to restore embryonic viability nor onset of X chromosome dosage compensation. Thus, maternal H4K16ac provides an instructive function to the offspring, priming future gene activation.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Activación Transcripcional/genética , Acetilación , Animales , Secuencia de Bases , Segregación Cromosómica/genética , Secuencia Conservada , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Evolución Molecular , Femenino , Genoma , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Masculino , Mamíferos/genética , Ratones , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Oocitos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Cromosoma X/metabolismo , Cigoto/metabolismo
3.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301651

RESUMEN

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Asunto(s)
Médula Ósea , Histona Acetiltransferasas , Humanos , Histona Acetiltransferasas/metabolismo , Médula Ósea/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo
4.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057113

RESUMEN

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Asunto(s)
Aspergillus fumigatus/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilación , Secuencia de Aminoácidos , Histona Acetiltransferasas/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformación Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Especificidad por Sustrato
5.
Cell ; 172(5): 897-909.e21, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474918

RESUMEN

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders.


Asunto(s)
Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Genoma Humano , Transcriptoma/genética , Empalme Alternativo/genética , Elementos Alu/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Estudios de Cohortes , Familia , Femenino , Sitios Genéticos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Intrones/genética , Masculino , Repeticiones de Minisatélite/genética , Modelos Genéticos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Nucleótido Esparcido Corto , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
6.
Cell ; 168(1-2): 135-149.e22, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086087

RESUMEN

CBP/p300 are transcription co-activators whose binding is a signature of enhancers, cis-regulatory elements that control patterns of gene expression in multicellular organisms. Active enhancers produce bi-directional enhancer RNAs (eRNAs) and display CBP/p300-dependent histone acetylation. Here, we demonstrate that CBP binds directly to RNAs in vivo and in vitro. RNAs bound to CBP in vivo include a large number of eRNAs. Using steady-state histone acetyltransferase (HAT) assays, we show that an RNA binding region in the HAT domain of CBP-a regulatory motif unique to CBP/p300-allows RNA to stimulate CBP's HAT activity. At enhancers where CBP interacts with eRNAs, stimulation manifests in RNA-dependent changes in the histone acetylation mediated by CBP, such as H3K27ac, and by corresponding changes in gene expression. By interacting directly with CBP, eRNAs contribute to the unique chromatin structure at active enhancers, which, in turn, is required for regulation of target genes.


Asunto(s)
Histona Acetiltransferasas/metabolismo , ARN no Traducido/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Línea Celular , Elementos de Facilitación Genéticos , Fibroblastos/metabolismo , Histonas/metabolismo , Ratones
7.
Annu Rev Biochem ; 85: 485-514, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145839

RESUMEN

Radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Of approximately 114,000 of these enzymes, 8 are known to be present in humans: MOCS1, molybdenum cofactor biosynthesis; LIAS, lipoic acid biosynthesis; CDK5RAP1, 2-methylthio-N(6)-isopentenyladenosine biosynthesis; CDKAL1, methylthio-N(6)-threonylcarbamoyladenosine biosynthesis; TYW1, wybutosine biosynthesis; ELP3, 5-methoxycarbonylmethyl uridine; and RSAD1 and viperin, both of unknown function. Aberrations in the genes encoding these proteins result in a variety of diseases. In this review, we summarize the biochemical characterization of these 8 radical S-adenosylmethionine enzymes and, in the context of human health, describe the deleterious effects that result from such genetic mutations.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Cardiopatías Congénitas/genética , Errores Innatos del Metabolismo de los Metales/genética , Mutación , Enfermedades Neurodegenerativas/genética , S-Adenosilmetionina/metabolismo , Liasas de Carbono-Carbono , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Expresión Génica , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/patología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Errores Innatos del Metabolismo de los Metales/enzimología , Errores Innatos del Metabolismo de los Metales/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/genética , Proteínas/metabolismo , Ácido Tióctico/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
8.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768893

RESUMEN

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Asunto(s)
Metabolismo Energético/genética , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Mitocondrias Musculares/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Cardiomiopatía Hipertrófica/genética , Respiración de la Célula/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HeLa , Insuficiencia Cardíaca/genética , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Musculares/genética , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa , Factores de Transcripción/genética
9.
Mol Cell ; 83(8): 1208-1209, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37084713

RESUMEN

In a recent study, Pollina et al.1 discover a new neuron-specific NuA4-TIP60 chromatin remodeling complex that facilitates the repair of activity-induced DNA double-strand breaks (DSBs) in neurons and protects against mutations that accumulate with age and early death.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Reparación del ADN , Histona Acetiltransferasas , Histonas , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Genes Dev ; 37(19-20): 865-882, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852796

RESUMEN

The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities.


Asunto(s)
Histona Acetiltransferasas , Lisina , Animales , Humanos , Ratones , Acetilación , Adhesión Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo
11.
Immunity ; 54(8): 1683-1697.e3, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34107298

RESUMEN

Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Células Enteroendocrinas/metabolismo , Microbioma Gastrointestinal/inmunología , Histona Acetiltransferasas/metabolismo , Intestinos/inmunología , Acetatos/inmunología , Acetilcoenzima A/metabolismo , Animales , Ensamble y Desensamble de Cromatina/fisiología , Drosophila melanogaster/microbiología , Ecdisona/metabolismo , Inmunidad Innata/inmunología , Intestinos/microbiología , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Interferencia de ARN , Transducción de Señal/inmunología , Taquicininas/metabolismo
12.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995509

RESUMEN

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Asunto(s)
Gluconeogénesis , Glucosa/deficiencia , Histonas/metabolismo , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
13.
Genes Dev ; 36(7-8): 408-413, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35393344

RESUMEN

Chaperones influence histone conformation and intermolecular interaction in multiprotein complexes, and the structures obtained with full-length histones often provide more accurate and comprehensive views. Here, our structure of the Hat1-Hat2 acetyltransferase complex bound to Asf1-H3-H4 shows that the core domains of H3 and H4 are involved in binding Hat1 and Hat2, and the N-terminal tail of H3 makes extensive interaction with Hat2. These findings expand the knowledge about histone-protein interaction and implicate a function of Hat2/RbAp46/48, which is a versatile histone chaperone found in many chromatin-associated complexes, in the passing of histones between chaperones.


Asunto(s)
Histona Acetiltransferasas , Histonas , Acetilación , Proteínas de Ciclo Celular/metabolismo , Cromatina , Histona Acetiltransferasas/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
14.
Genes Dev ; 36(17-18): 985-1001, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302553

RESUMEN

Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factor de Transcripción TFIID , Factor de Transcripción TFIID/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Regiones Promotoras Genéticas/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
15.
Nat Immunol ; 18(11): 1238-1248, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28892470

RESUMEN

FoxP3 conditions the transcriptional signature and functional facets of regulatory T cells (Treg cells). Its mechanism of action, whether as an activator or a repressor, has remained unclear. Here, chromatin analysis showed that FoxP3 bound active enhancer elements, not repressed chromatin, around loci over- or under-expressed in Treg cells. We evaluated the impact of a panel of FoxP3 mutants on its transcriptional activity and interactions with DNA, transcriptional cofactors and chromatin. Computational integration, confirmed by biochemical interaction and size analyses, showed that FoxP3 existed in distinct multimolecular complexes. It was active and primarily an activator when complexed with the transcriptional factors RELA, IKZF2 and KAT5. In contrast, FoxP3 was inactive when complexed with the histone methyltransferase EZH2 and transcription factors YY1 and IKZF3. The latter complex partitioned to a peripheral region of the nucleus, as shown by super-resolution microscopy. Thus, FoxP3 acts in multimodal fashion to directly activate or repress transcription, in a context- and partner-dependent manner, to govern Treg cell phenotypes.


Asunto(s)
Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Linfocitos T Reguladores/metabolismo , Activación Transcripcional , Animales , Células Cultivadas , ADN/genética , ADN/metabolismo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Immunoblotting , Lisina Acetiltransferasa 5 , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Células 3T3 NIH , Unión Proteica , Linfocitos T Reguladores/inmunología , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
16.
Nat Immunol ; 18(7): 800-812, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504697

RESUMEN

An imbalance in the lineages of immunosuppressive regulatory T cells (Treg cells) and the inflammatory TH17 subset of helper T cells leads to the development of autoimmune and/or inflammatory disease. Here we found that TAZ, a coactivator of TEAD transcription factors of Hippo signaling, was expressed under TH17 cell-inducing conditions and was required for TH17 differentiation and TH17 cell-mediated inflammatory diseases. TAZ was a critical co-activator of the TH17-defining transcription factor RORγt. In addition, TAZ attenuated Treg cell development by decreasing acetylation of the Treg cell master regulator Foxp3 mediated by the histone acetyltransferase Tip60, which targeted Foxp3 for proteasomal degradation. In contrast, under Treg cell-skewing conditions, TEAD1 expression and sequestration of TAZ from the transcription factors RORγt and Foxp3 promoted Treg cell differentiation. Furthermore, deficiency in TAZ or overexpression of TEAD1 induced Treg cell differentiation, whereas expression of a transgene encoding TAZ or activation of TAZ directed TH17 cell differentiation. Our results demonstrate a pivotal role for TAZ in regulating the differentiation of Treg cells and TH17 cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Diferenciación Celular/inmunología , Colitis/inmunología , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Artritis Reumatoide/inmunología , Estudios de Casos y Controles , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Células HeLa , Histona Acetiltransferasas/metabolismo , Humanos , Immunoblotting , Lisina Acetiltransferasa 5 , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT3/metabolismo , Síndrome de Sjögren/inmunología , Proteínas Smad/inmunología , Proteínas Smad/metabolismo , Factores de Transcripción de Dominio TEA , Transactivadores/metabolismo , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
17.
Cell ; 159(3): 558-71, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417107

RESUMEN

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.


Asunto(s)
Código de Histonas , Metiltransferasas/química , Metiltransferasas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilación , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transcripción Genética
18.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33657400

RESUMEN

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Asunto(s)
Histona Acetiltransferasas/genética , Homeostasis/genética , Transcripción Genética/genética , Acetilación , Animales , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Células THP-1
19.
Mol Cell ; 81(5): 953-968.e9, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33503407

RESUMEN

While the role of transcription factors and coactivators in controlling enhancer activity and chromatin structure linked to gene expression is well established, the involvement of corepressors is not. Using inflammatory macrophage activation as a model, we investigate here a corepressor complex containing GPS2 and SMRT both genome-wide and at the Ccl2 locus, encoding the chemokine CCL2 (MCP-1). We report that corepressors co-occupy candidate enhancers along with the coactivators CBP (H3K27 acetylase) and MED1 (mediator) but act antagonistically by repressing eRNA transcription-coupled H3K27 acetylation. Genome editing, transcriptional interference, and cistrome analysis reveals that apparently related enhancer and silencer elements control Ccl2 transcription in opposite ways. 4C-seq indicates that corepressor depletion or inflammatory signaling functions mechanistically similarly to trigger enhancer activation. In ob/ob mice, adipose tissue macrophage-selective depletion of the Ccl2 enhancer-transcribed eRNA reduces metaflammation. Thus, the identified corepressor-eRNA-chemokine pathway operates in vivo and suggests therapeutic opportunities by targeting eRNAs in immuno-metabolic diseases.


Asunto(s)
Quimiocina CCL2/genética , Proteínas Co-Represoras/genética , Elementos de Facilitación Genéticos , Péptidos y Proteínas de Señalización Intracelular/genética , Co-Represor 2 de Receptor Nuclear/genética , Obesidad/genética , Elementos Silenciadores Transcripcionales , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Animales , Sistemas CRISPR-Cas , Quimiocina CCL2/inmunología , Proteínas Co-Represoras/inmunología , Edición Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/inmunología , Histonas/genética , Histonas/inmunología , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Masculino , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/inmunología , Ratones , Ratones Obesos , Co-Represor 2 de Receptor Nuclear/inmunología , Obesidad/inmunología , Obesidad/patología , Células RAW 264.7 , ARN no Traducido/genética , ARN no Traducido/inmunología , Transducción de Señal
20.
Genes Dev ; 35(23-24): 1678-1692, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819351

RESUMEN

How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes-a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Acetilación , Cromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA