Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(1): e111389, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36444797

RESUMEN

The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.


Asunto(s)
Inflamasomas , Peritonitis , Ratones , Humanos , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamación , Histona Desacetilasa 6/genética , alfa-Tocoferol , Ácido Úrico , Peritonitis/inducido químicamente , Lisosomas , Ratones Endogámicos C57BL
2.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199570

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Asunto(s)
Inflamasomas , Leucocitos Mononucleares , Animales , Humanos , Ratones , Línea Celular , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transporte de Proteínas/fisiología
3.
EMBO Rep ; 24(10): e56009, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37642636

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Animales , Ratones , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células de la Médula Ósea/metabolismo , Homeostasis
4.
Exp Cell Res ; 440(1): 114126, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857838

RESUMEN

Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.


Asunto(s)
División Celular , Microtúbulos , Simbiosis , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/efectos de los fármacos , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestructura , Trypanosomatina/fisiología , Ácidos Hidroxámicos/farmacología , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Bacterias/metabolismo , Bacterias/genética , Acetilación , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura
5.
Nucleic Acids Res ; 51(17): 9166-9182, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503842

RESUMEN

Histone deacetylase 6 (HDAC6) mediates DNA damage signaling by regulating the mismatch repair and nucleotide excision repair pathways. Whether HDAC6 also mediates DNA double-strand break (DSB) repair is unclear. Here, we report that HDAC6 negatively regulates DSB repair in an enzyme activity-independent manner. In unstressed cells, HDAC6 interacts with H2A/H2A.X to prevent its interaction with the E3 ligase RNF168. Upon sensing DSBs, RNF168 rapidly ubiquitinates HDAC6 at lysine 116, leading to HDAC6 proteasomal degradation and a restored interaction between RNF168 and H2A/H2A.X. H2A/H2A.X is ubiquitinated by RNF168, precipitating the recruitment of DSB repair factors (including 53BP1 and BRCA1) to chromatin and subsequent DNA repair. These findings reveal novel regulatory machinery based on an HDAC6-RNF168 axis that regulates the H2A/H2A.X ubiquitination status. Interfering with this axis might be leveraged to disrupt a key mechanism of cancer cell resistance to genotoxic damage and form a potential therapeutic strategy for cancer.


Asunto(s)
Reparación del ADN , Humanos , Línea Celular Tumoral , Daño del ADN , Histona Desacetilasa 6/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Cell Mol Med ; 28(17): e70063, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232846

RESUMEN

Histone deacetylase 6 (HDAC6) belongs to the class IIb group of the histone deacetylase family, which participates in remodelling of various tissues. Herein, we sought to examine the potential regulation of HDAC6 in cardiac remodelling post-infarction. Experimental myocardial infarction (MI) was created in HDAC6-deficient (HDAC6-/-) mice and wild-type (HADC6+/+) by left coronary artery ligation. At days 0 and 14 post-MI, we evaluated cardiac function, morphology and molecular endpoints of repair and remodelling. At day 14 after surgery, the ischemic myocardium had increased levels of HADC6 gene and protein of post-MI mice compared to the non-ischemic myocardium of control mice. As compared with HDAC6-/--MI mice, HADC6 deletion markedly improved infarct size and cardiac fibrosis as well as impaired left ventricular ejection fraction and left ventricular fraction shortening. At the molecular levels, HDAC6-/- resulted in a significant reduction in the levels of the transforming growth factor-beta 1 (TGF-ß1), phosphor-Smad-2/3, collagen I and collagen III proteins and/or in the ischemic cardiac tissues. All of these beneficial effects were reproduced by a pharmacological inhibition of HADC6 in vivo. In vitro, hypoxic stress increased the expressions of HADC6 and collagen I and III gene; these alterations were significantly prevented by the HADC6 silencing and TubA loading. These findings indicated that HADC6 deficiency resists ischemic injury by a reduction of TGF-ß1/Smad2/3 signalling activation, leading to decreased extracellular matrix production, which reduces cardiac fibrosis and dysfunction, providing a potential molecular target in the treatment of patients with MI.


Asunto(s)
Fibrosis , Histona Desacetilasa 6 , Infarto del Miocardio , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Remodelación Ventricular , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Ratones , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Miocardio/metabolismo , Miocardio/patología , Ratones Noqueados , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
J Virol ; 97(5): e0037523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133375

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Antivirales/farmacología , Antivirales/metabolismo , Coronavirus/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Lisina/metabolismo , Porcinos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Replicación Viral
8.
J Transl Med ; 22(1): 811, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223648

RESUMEN

BACKGROUND: Mechanical unloading-induced bone loss threatens prolonged spaceflight and human health. Recent studies have confirmed that osteoporosis is associated with a significant reduction in bone microvessels, but the relationship between them and the underlying mechanism under mechanical unloading are still unclear. METHODS: We established a 2D clinostat and hindlimb-unloaded (HLU) mouse model to simulate unloading in vitro and in vivo. Micro-CT scanning was performed to assess changes in the bone microstructure and mass of the tibia. The levels of CD31, Endomucin (EMCN) and histone deacetylase 6 (HDAC6) in tibial microvessels were detected by immunofluorescence (IF) staining. In addition, we established a coculture system of microvascular endothelial cells (MVECs) and osteoblasts, and qRT‒PCR or western blotting was used to detect RNA and protein expression; cell proliferation was detected by CCK‒8 and EdU assays. ChIP was used to detect whether HDAC6 binds to the miRNA promoter region. RESULTS: Bone mass and bone microvessels were simultaneously significantly reduced in HLU mice. Furthermore, MVECs effectively promoted the proliferation and differentiation of osteoblasts under coculture conditions in vitro. Mechanistically, we found that the HDAC6 content was significantly reduced in the bone microvessels of HLU mice and that HDAC6 inhibited the expression of miR-375-3p by reducing histone acetylation in the miR-375 promoter region in MVECs. miR-375-3p was upregulated under unloading and it could inhibit MVEC proliferation by directly targeting low-density lipoprotein-related receptor 5 (LRP5) expression. In addition, silencing HDAC6 promoted the miR-375-3p/LRP5 pathway to suppress MVEC proliferation under mechanical unloading, and regulation of HDAC6/miR-375-3p axis in MVECs could affect osteoblast proliferation under coculture conditions. CONCLUSION: Our study revealed that disuse-induced bone loss may be closely related to a reduction in the number of bone microvessels and that the modulation of MVEC function could improve bone loss induced by unloading. Mechanistically, the HDAC6/miR-375-3p/LRP5 pathway in MVECs might be a promising strategy for the clinical treatment of unloading-induced bone loss.


Asunto(s)
Proliferación Celular , Células Endoteliales , Epigénesis Genética , Suspensión Trasera , Histona Desacetilasa 6 , MicroARNs , Microvasos , Osteoblastos , Animales , MicroARNs/metabolismo , MicroARNs/genética , Células Endoteliales/metabolismo , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Microvasos/patología , Osteoblastos/metabolismo , Ratones Endogámicos C57BL , Ratones , Técnicas de Cocultivo , Diferenciación Celular , Masculino , Resorción Ósea/patología , Secuencia de Bases , Inhibidores de Histona Desacetilasas/farmacología
9.
Plant Physiol ; 193(4): 2711-2733, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607253

RESUMEN

Understanding the molecular regulation of plant response to drought is the basis of drought-resistance improvement through molecular strategies. Here, we characterized apple (Malus × domestica) histone deacetylase 6 (MdHDA6), which negatively regulates apple drought tolerance by catalyzing deacetylation on histones associated with drought-responsive genes. Transgenic apple plants over-expressing MdHDA6 were less drought-tolerant, while those with down-regulated MdHDA6 expression were more drought-resistant than nontransgenic apple plants. Transcriptomic and histone 3 acetylation (H3ac) Chromatin immunoprecipitation-seq analyses indicated that MdHDA6 could facilitate histone deacetylation on the drought-responsive genes, repressing gene expression. Moreover, MdHDA6 interacted with the abscisic acid (ABA) signaling transcriptional factor, ABSCISIC ACID-INSENSITIVE 5 (MdABI5), forming the MdHDA6-MdABI5 complex. Interestingly, MdHDA6 facilitated histone deacetylation on the drought-responsive genes regulated by MdABI5, resulting in gene repression. Furthermore, a dual-Luc experiment showed that MdHDA6 could repress the regulation of a drought-responsive gene, RESPONSIVE TO DESICCATION 29A (MdRD29A) activated by MdABI5. On the one hand, MdHDA6 can facilitate histone deacetylation and gene repression on the positive drought-responsive genes to negatively regulate drought tolerance in apple. On the other hand, MdHDA6 directly interacts with MdABI5 and represses the expression of genes downstream of MdABI5 via histone deacetylation around these genes to reduce drought tolerance. Our study uncovers a different drought response regulatory mechanism in apple based on the MdHDA6-MdABI5 complex function and provides the molecular basis for drought-resistance improvement in apple.


Asunto(s)
Malus , Proteínas de Plantas , Ácido Abscísico/metabolismo , Resistencia a la Sequía , Sequías , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasa 6/genética , Histonas/genética , Histonas/metabolismo , Malus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
10.
Virol J ; 21(1): 186, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135075

RESUMEN

BACKGROUND: The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease. AIM: The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection. RESULTS: Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1. CONCLUSION: This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Histona Desacetilasa 6 , SARS-CoV-2 , Replicación Viral , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Humanos , SARS-CoV-2/fisiología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Acetilación , Línea Celular , Chlorocebus aethiops , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Vero , Animales , Interacciones Huésped-Patógeno , Proteínas de Unión a Poli-ADP-Ribosa , ADN Helicasas , ARN Helicasas
11.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961488

RESUMEN

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Asunto(s)
Aurora Quinasa A , Centriolos , Cilios , Cilios/metabolismo , Humanos , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Centriolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
12.
J Peripher Nerv Syst ; 29(2): 213-220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551018

RESUMEN

BACKGROUND: Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS: Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS: Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS: The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION: Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Histona Desacetilasa 6 , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Histona Desacetilasa 6/genética , Ratones , Humanos , Nervio Ciático , Ratones Noqueados , Eliminación de Gen , Masculino , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Glicina-ARNt Ligasa/genética , Conducción Nerviosa/fisiología , Conducción Nerviosa/efectos de los fármacos
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 687-697, 2024 May 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-39174882

RESUMEN

OBJECTIVES: Flotillin-2 (FLOT2) is a prototypical oncogenic and a potential target for cancer therapy. However, strategies for targeting FLOT2 remain undefined. Post-translational modifications are crucial for regulating protein stability, function, and localization. Understanding the mechanisms and roles of post-translational modifications is key to developing targeted therapies. This study aims to investigate the regulation and function of lysine acetylation of FLOT2 in nasopharyngeal carcinoma, providing new insights for targeting FLOT2 in cancer intervention. METHODS: The PhosphoSitePlus database was used to analyze the lysine acetylation sites of FLOT2, and a lysine acetylation site mutation of FLOT2 [FLOT2 (K211R)] was constructed. Nasopharyngeal carcinoma cells were treated with histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and Sirt family deacetylase inhibitor nicotinamide (NAM). TSA-treated human embryonic kidney (HEK)-293T were transfected with FLOT2 mutant plasmids. Co-immunoprecipitation (Co-IP) was used to detect total acetylation levels of FLOT2 and the effects of specific lysine (K) site mutations on FLOT2 acetylation. Western blotting was used to detect FLOT2/FLAG-FLOT2 protein expression in TSA-treated nasopharyngeal carcinoma cells transfected with FLOT mutant plasmids, and real-time reverse transcription PCR (real-time RT-PCR) was used to detect FLOT2 mRNA expression. Nasopharyngeal carcinoma cells were treated with TSA combined with MG132 or chloroquine (CQ) to analyze FLOT2 protein expression. Cycloheximide (CHX) was used to treat HEK-293T cells transfected with FLAG-FLOT2 (WT) or FLAG-FLOT2(K211R) plasmids to assess protein degradation rates. The BioGrid database was used to identify potential interactions between FLOT2 and HDAC6, which were validated by Co-IP. HEK-293T cells were co-transfected with FLAG-FLOT2 (WT)/FLAG-FLOT2 (K211R) and Vector/HDAC6 plasmids, and grouped into FLAG-FLOT2 (WT)+Vector, FLAG-FLOT2 (WT)+HDAC6, FLAG-FLOT2 (K211R)+Vector, and FLAG-FLOT2 (K211R)+HDAC6 to analyze the impact of K211R mutation on total lysine acetylation levels. In 6-0B cells, overexpression of FLOT2 (WT) and FLOT2 (K211R) was performed, and the biological functions of FLOT2 acetylation site mutants were assessed using cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays. RESULTS: The PhosphoSitePlus database indicated that FLOT2 has an acetylation modification at the K211 site. Co-IP confirmed significant acetylation of FLOT2, with TSA significantly increasing overall FLOT2 acetylation levels, while NAM had no effect. Mutation at the K211 site significantly reduced overall FLOT2 acetylation, unaffected by TSA. TSA decreased FLOT2 protein expression in nasopharyngeal carcinoma cells without affecting FLOT2 mRNA levels or FLOT2 (K211R) protein expression in transfected cells. The degradation rate of FLOT2 (K211R) protein was significantly slower than that of FLOT2 (WT). The proteasome inhibitor MG132 prevented TSA-induced FLOT2 degradation, while the lysosome inhibitor CQ did not. BioGrid data suggested a potential interaction between FLOT2 and HDAC6, confirmed by Co-IP. Knockdown of HDAC6 in nasopharyngeal carcinoma cells significantly increased FLOT2 acetylation; co-transfection of HDAC6 and FLAG-FLOT2 (WT) significantly decreased total lysine acetylation levels, whereas co-transfection of HDAC6 and FLAG-FLOT2 (K211R) had no effect. Knockdown of HDAC6 significantly reduced FLOT2 protein levels without affecting mRNA levels. MG132 prevented HDAC6-knockdown-induced FLOT2 degradation. Knockdown of HDAC6 significantly accelerated FLOT2 degradation. Nasopharyngeal carcinoma cells transfected with FLOT2 (K211R) showed significantly higher proliferation and invasion than those transfected with FLOT2 (WT). CONCLUSIONS: The K211 site of FLOT2 undergoes acetylation modification, and HDAC6 mediates deacetylation at this site, inhibiting proteasomal degradation of FLOT2 and maintaining its stability and tumor-promoting function in nasopharyngeal carcinoma.


Asunto(s)
Histona Desacetilasa 6 , Proteínas de la Membrana , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Acetilación , Línea Celular Tumoral , Proliferación Celular , Células HEK293 , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mutación , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Niacinamida/farmacología , Procesamiento Proteico-Postraduccional
14.
J Cell Mol Med ; 27(2): 174-188, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36578217

RESUMEN

Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.


Asunto(s)
Proteínas 14-3-3 , Transducción de Señal , Ratones , Animales , Humanos , Proteínas 14-3-3/metabolismo , Ácidos Hidroxámicos/farmacología , Diferenciación Celular/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo
15.
Br J Cancer ; 128(9): 1753-1764, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36810912

RESUMEN

BACKGROUND: Although trimodality therapy resecting tumours followed by chemoradiotherapy is emerged for muscle-invasive bladder cancer (MIBC), chemotherapy produces toxicities. Histone deacetylase inhibitors have been identified as an effective strategy to enhance cancer radiotherapy (RT). METHODS: We examined the role of HDAC6 and specific inhibition of HDAC6 on BC radiosensitivity by performing transcriptomic analysis and mechanism study. RESULTS: HDAC6 knockdown or HDAC6 inhibitor (HDAC6i) tubacin exerted a radiosensitizing effect, including decreased clonogenic survival, increased H3K9ac and α-tubulin acetylation, and accumulated γH2AX, which are similar to the effect of panobinostat, a pan-HDACi, on irradiated BC cells. Transcriptomics of shHDAC6-transduced T24 under irradiation showed that shHDAC6 counteracted RT-induced mRNA expression of CXCL1, SERPINE1, SDC1 and SDC2, which are linked to cell migration, angiogenesis and metastasis. Moreover, tubacin significantly suppressed RT-induced CXCL1 and radiation-enhanced invasion/migration, whereas panobinostat elevated RT-induced CXCL1 expression and invasion/migration abilities. This phenotype was significantly abrogated by anti-CXCL1 antibody, indicating the key regulator of CXCL1 contributing to BC malignancy. Immunohistochemical evaluation of tumours from urothelial carcinoma patients supported the correlation between high CXCL1 expression and reduced survival. CONCLUSION: Unlike pan-HDACi, the selective HDAC6i can enhance BC radiosensitization and effectively inhibit RT-induced oncogenic CXCL1-Snail-signalling, thus further advancing its therapeutic potential with RT.


Asunto(s)
Carcinoma de Células Transicionales , Histona Desacetilasa 6 , Tolerancia a Radiación , Neoplasias de la Vejiga Urinaria , Humanos , Acetilación , Línea Celular Tumoral , Histona Desacetilasa 6/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Panobinostat/farmacología , Tubulina (Proteína)/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/radioterapia
16.
FASEB J ; 36(1): e22072, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907598

RESUMEN

Alzheimer's disease (AD) is marked by cognitive impairment, massive cell death, and reduced life expectancy. Pathologically, accumulated beta-amyloid (Aß) aggregates and hyperphosphorylated tau protein is the hallmark of the disease. Although changes in cellular function and protein accumulates have been demonstrated in many different AD animal models, the molecular mechanism involved in different cellular functions and the correlation and causative relation between different protein accumulations remain elusive. Our in vivo genetic studies revealed that the molecular mechanisms involved in memory loss and lifespan shortening are different and that tau plays an essential role in mediating Aß-induced early death. We found that when the first deacetylase (DAC) domain of histone deacetylase 6 (HDAC6) activity was increased, it regulated cortactin deacetylation to reverse Aß-induced learning and memory deficit, but with no effect on the lifespan of the Aß flies. On the other hand, an increased amount of the second DAC domain of HDAC6 promoted tau phosphorylation to facilitate Aß-induced lifespan shortening without affecting learning performance in the Aß flies. Our data also confirmed decreased acetylation in two major HDAC6 downstream proteins, suggesting increased HDAC6 activity in Aß flies. Our data established the double-edged sword effect of HDAC6 activity in Aß-induced pathologies. Not only did we segregate memory loss and lifespan shortening in Aß flies, but we also provided evidence to link the Aß with tau signaling.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Drosophila/metabolismo , Histona Desacetilasa 6/metabolismo , Longevidad , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Histona Desacetilasa 6/genética , Proteínas tau/genética
17.
J Biomed Sci ; 30(1): 4, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639650

RESUMEN

BACKGROUND: The leading cause of cancer-related mortality worldwide is lung cancer, and its clinical outcome and prognosis are still unsatisfactory. The understanding of potential molecular targets is necessary for clinical implications in precision diagnostic and/or therapeutic purposes. Histone deacetylase 6 (HDAC6), a major deacetylase enzyme, is a promising target for cancer therapy; however, the molecular mechanism regulating cancer pathogenesis is largely unknown. METHODS: The clinical relevance of HDAC6 expression levels and their correlation with the overall survival rate were analyzed based on the TCGA and GEO databases. HDAC6 expression in clinical samples obtained from lung cancer tissues and patient-derived primary lung cancer cells was evaluated using qRT-PCR and Western blot analysis. The potential regulatory mechanism of HDAC6 was identified by proteomic analysis and validated by immunoblotting, immunofluorescence, microtubule sedimentation, and immunoprecipitation-mass spectrometry (IP-MS) assays using a specific inhibitor of HDAC6, trichostatin A (TSA) and RNA interference to HDAC6 (siHDAC6). Lung cancer cell growth was assessed by an in vitro 2-dimensional (2D) cell proliferation assay and 3D tumor spheroid formation using patient-derived lung cancer cells. RESULTS: HDAC6 was upregulated in lung cancer specimens and significantly correlated with poor prognosis. Inhibition of HDAC6 by TSA and siHDAC6 caused downregulation of phosphorylated extracellular signal-regulated kinase (p-ERK), which was dependent on the tubulin acetylation status. Tubulin acetylation induced by TSA and siHDAC6 mediated the dissociation of p-ERK on microtubules, causing p-ERK destabilization. The proteomic analysis demonstrated that the molecular chaperone glucose-regulated protein 78 (GRP78) was an important scaffolder required for p-ERK localization on microtubules, and this phenomenon was significantly inhibited by either TSA, siHDAC6, or siGRP78. In addition, suppression of HDAC6 strongly attenuated an in vitro 2D lung cancer cell growth and an in vitro 3D patient derived-lung cancer spheroid growth. CONCLUSIONS: HDAC6 inhibition led to upregulate tubulin acetylation, causing GRP78-p-ERK dissociation from microtubules. As a result, p-ERK levels were decreased, and lung cancer cell growth was subsequently suppressed. This study reveals the intriguing role and molecular mechanism of HDAC6 as a tumor promoter, and its inhibition represents a promising approach for anticancer therapy.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Neoplasias Pulmonares , Tubulina (Proteína) , Humanos , Acetilación , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pulmonares/genética , Fosforilación , Proteómica , Tubulina (Proteína)/metabolismo
18.
Pancreatology ; 23(6): 630-641, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37460341

RESUMEN

BACKGROUND: Pancreatic cancer is a common digestive system cancer and one of the most lethal malignancies worldwide. Ataxin-3 (ATXN3) protein is a deubiquitinating enzyme implicated in the occurrence of diverse human cancers. The potential role of ATXN3 in pancreatic cancer still remains unclear. METHODS: ATXN3 was screened from differentially-upregulated genes of GSE71989, GSE27890 and GSE40098 datasets. The mRNA and protein levels of ATXN3 was evaluated in pancreatic cancer samples and cell lines. Through the gain- and loss-of-function experiments, the effects of ATXN3 on cell proliferation, migration and invasion were evaluated using cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) staining, wound healing and Transwell assays. Subsequently, the interaction between ATXN3 and HDAC6 was confirmed using double immunofluorescence staining, co-immunoprecipitation (co-IP) and proximity ligation assay (PLA). The underlying mechanism of ATXN3 was determined by knockdown of HDAC6 in ATXN3-upregulated pancreatic cancer cells. The function of ATXN3 in vivo was verified through xenograft assay. RESULTS: High expression of ATXN3 was found in pancreatic cancer tissues. Increased ATXN3 expression dramatically promoted cell proliferation, migration, and invasion. The malignant phenotypes were suppressed in ATXN3-silenced pancreatic cancer cells. ATXN3 was proved to interact with HDAC6 and regulate its degradation through deubiquitination. Downregulation of HDAC6 inhibited ATXN3-induced development of pancreatic cancer cells through regulating the expression of PCNA, vimentin and E-cadherin. ATXN3 facilitated tumor growth of pancreatic cancer and increased HDAC6 expression in vivo. CONCLUSIONS: This study confirmed that ATXN3 facilitated malignant phenotypes of pancreatic cancer via reducing the ubiquitination of HDAC6.


Asunto(s)
Ataxina-3 , Histona Desacetilasa 6 , Neoplasias Pancreáticas , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Represoras/genética , Neoplasias Pancreáticas
19.
Cell Biol Toxicol ; 39(5): 2365-2379, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764897

RESUMEN

Histone deacetylases (HDACs) has been implicated in cardiac diseases, while the role of HDAC6 in dilated cardiomyopathy (DCM) remains obscure. The in silico analyses predicted potential association of HDAC6 with autophagy-related genes and DCM. Thus, we evaluated the functional relevance of HDAC6 in DCM in vivo and in vitro. We developed a rat model in vivo and a cell model in vitro by doxorubicin (DOX) induction to simulate DCM. HDAC6 expression was determined in myocardial tissues of DCM rats. DCM rats exhibited elevated HDAC6 mRNA and protein expression as compared to sham-operated rats. We knocked HDAC6 down and/or overexpressed NLRP3 in vivo and in vitro to characterize their roles in cardiomyocyte autophagy. It was established that shRNA-mediated HDAC6 silencing augmented cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation, thus ameliorating cardiac injury in myocardial tissues of DCM rats. Besides, in DOX-injured cardiomyocytes, HDAC6 silencing also diminished NLRP3 inflammasome activation and cell apoptosis but enhanced cell autophagy, whereas ectopic NLRP3 expression negated the effects of HDAC6 silencing. Since HDAC6 knockdown correlates with enhanced cardiomyocyte autophagy and suppressed NLRP3 inflammasome activation through an interplay with NLRP3, it is expected to be a potential biomarker and therapeutic target for DCM. 1. HDAC6 was up-regulated in DCM rats. 2. HDAC6 knockdown promoted cardiomyocyte autophagy to relieve cardiac dysfunction. 3. HDAC6 knockdown inhibited NLRP3 inflammasome and promoted cardiomyocyte autophagy. 4. Silencing HDAC6 promoted autophagy and repressed apoptosis in cardiomyocytes. 5. This study provides novel therapeutic targets for DCM.


Asunto(s)
Cardiomiopatía Dilatada , Histona Desacetilasa 6 , Inflamasomas , Animales , Ratas , Autofagia/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Línea Celular , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Remodelación Ventricular
20.
Cell Mol Life Sci ; 79(7): 356, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678904

RESUMEN

Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.


Asunto(s)
Apoptosis , Lesiones Encefálicas , Acetilación , Animales , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/genética , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Ratones , Neuronas/metabolismo , Estrés Oxidativo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA