Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.842
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(5): 671-674, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38626399

RESUMEN

Autoinduction of cytochrome P450 (P450) 3A4-mediated metabolism of thalidomide was investigated in humanized-liver mice and human hepatocyte-derived HepaSH cells. The mean plasma ratios of 5-hydroxythalidomide and glutathione adducts to thalidomide were significantly induced (3.5- and 6.0-fold, respectively) by thalidomide treatment daily at 1000 mg/kg for 3 days and measured at 2 h after the fourth administration (on day 4). 5-Hydroxythalidomide was metabolically activated by P450 3A4 in HepaSH cells pretreated with 300 and 1000 µM thalidomide, and 5,6-dihydroxythalidomide was detected. Significant induction of P450 3A4 mRNA expression (4.1-fold) in the livers of thalidomide-treated mice occurred. Thalidomide exerts a variety of actions through multiple mechanisms following bioactivation by induced human P450 3A enzymes.


Asunto(s)
Citocromo P-450 CYP3A , Hepatocitos , Talidomida , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Humanos , Animales , Talidomida/farmacología , Talidomida/análogos & derivados , Ratones , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Línea Celular , ARN Mensajero/metabolismo , Inducción Enzimática/efectos de los fármacos , Masculino , Inductores del Citocromo P-450 CYP3A/farmacología
2.
Physiol Rev ; 96(1): 307-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26681794

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.


Asunto(s)
Antioxidantes/metabolismo , Enzimas/metabolismo , Estado de Salud , Estrés Oxidativo , Animales , Modelos Animales de Enfermedad , Inducción Enzimática , Represión Enzimática , Enzimas/biosíntesis , Enzimas/genética , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Humanos , Ratones Transgénicos , Estado Nutricional , Oxidación-Reducción , Fenotipo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo
3.
Drug Metab Dispos ; 51(3): 276-284, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460477

RESUMEN

Reliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 µM (n = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%). Furthermore, the in vivo area under the curve reduction of probe CYP substrates was reasonably predicted for eight marketed drugs (carbamazepine, dexamethasone, enzalutamide, nevirapine, phenobarbital, phenytoin, rifampicin, and rufinamide) using the static net effect model using both the PXR activation and CYP3A4 mRNA induction data. The liver exit concentrations were used for the model in place of the inlet concentrations to avoid false positive predictions and the concentration achieving twofold induction (F2) was used to compensate for the lack of full induction kinetics due to cytotoxicity and solubility limitations in vitro. These findings can complement the currently available induction risk mitigation strategy and potentially influence the drug interaction modeling work conducted at clinical stages. SIGNIFICANCE STATEMENT: The established correlation of CYP3A4 mRNA in human hepatocytes to PXR activation provides a clear cut-off to identify a compound showing an in vitro induction risk, complementing current regulatory guidance. Also, the demonstrated in vitro-in vivo translation of induction data strongly supports a clinical development program although limitations remain for drug candidates showing complex disposition pathways, such as involvement of auto-inhibition/induction, active transport and high protein binding.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Citocromo P-450 CYP3A/metabolismo , Receptor X de Pregnano/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Rifampin/farmacología , Rifampin/metabolismo , Inducción Enzimática , Hepatocitos/metabolismo , ARN Mensajero/metabolismo
4.
Ther Drug Monit ; 45(5): 653-659, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645709

RESUMEN

BACKGROUND: Perampanel (PER) is an oral antiepileptic drug and its concomitant use with carbamazepine (CBZ) leads to decreased PER concentrations. However, the magnitude of its influence may vary, depending on the dynamics of the enzyme induction properties of CBZ. This study aimed to develop a population pharmacokinetic (PPK) model considering the dynamics of enzyme induction and evaluate the effect of CBZ on PER pharmacokinetics. METHODS: We retrospectively collected data on patient background, laboratory tests, and prescribed drugs from electronic medical records. We developed 2 PPK models incorporating the effect of CBZ-mediated enzyme induction to describe time-concentration profiles of PER using the following different approaches: (1) treating the concomitant use of CBZ as a categorical covariate (empirical PPK model) and (2) incorporating the time-course of changes in the amount of enzyme by CBZ-mediated induction (semimechanistic PPK model). The bias and precision of the predictions were investigated by calculating the mean error, mean absolute error, and root mean squared error. RESULTS: A total of 133 PER concentrations from 64 patients were available for PPK modelling. PPK analyses showed that the co-administration of CBZ increased the clearance of PER. Goodness-of-fit plots indicated a favorable description of the observed data and low bias. The mean error, mean absolute error, and root mean square error values based on the semimechanistic model were smaller than those obtained using the empirical PPK model for predicting PER concentrations in patients with CBZ. CONCLUSIONS: We developed 2 PPK models to describe PER pharmacokinetics based on different approaches, using electronic medical record data. Our PPK models support the use of PER in clinical practice.


Asunto(s)
Carbamazepina , Epilepsia , Humanos , Estudios Retrospectivos , Inducción Enzimática , Carbamazepina/uso terapéutico , Epilepsia/tratamiento farmacológico , Benzodiazepinas/uso terapéutico , Interacciones Farmacológicas
5.
J Chem Inf Model ; 63(1): 173-186, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36473234

RESUMEN

Three structurally closely related dopamine D1 receptor positive allosteric modulators (D1 PAMs) based on a tetrahydroisoquinoline (THIQ) scaffold were profiled for their CYP3A4 induction potentials. It was found that the length of the linker at the C5 position greatly affected the potentials of these D1 PAMs as CYP3A4 inducers, and the level of induction correlated well with the activation of the pregnane X receptor (PXR). Based on the published PXR X-ray crystal structures, we built a binding model specifically for these THIQ-scaffold-based D1 PAMs in the PXR ligand-binding pocket via an ensemble docking approach and found the model could explain the observed CYP induction disparity. Combined with our previously reported D1 receptor homology model, which identified the C5 position as pointing toward the solvent-exposed space, our PXR-binding model coincidentally suggested that structural modifications at the C5 position could productively modulate the CYP induction potential while maintaining the D1 PAM potency of these THIQ-based PAMs.


Asunto(s)
Citocromo P-450 CYP3A , Receptores de Esteroides , Receptor X de Pregnano/metabolismo , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Inducción Enzimática
6.
J Appl Toxicol ; 43(6): 828-844, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36549901

RESUMEN

The fungicide boscalid induces thyroid histopathological and hormone effects in the rat, secondary to liver enzyme induction. To assess the human relevance of liver enzyme induction presumably leading to thyroid hormone disruption, a species comparative in vitro study on T4-glucuronidation was conducted. Currently, no guidelines how to evaluate Phase II induction are in place. Therefore, we investigated the optimal conditions to evaluate Phase I and Phase II induction potential of boscalid in primary rat (PRH) and human (PHH) hepatocytes. Endpoints included mRNA gene expression and enzyme activities (cytochrome P450 isozymes [CYPs] and uridine diphosphate-glucuronosyltransferases [UGTs]), measured after 3 (D3) and 7 (D7) days of exposure to reference compounds and to 5, 10, and 20 µM boscalid, focusing on T4-glucuronidation. Basal CYP activities and T4 glucuronidation were similar or higher on D7 than D3. The highest induction responses of CYPs were on D3, whereas UGT induction and T4-glucuronidation increases were highest on D7. Boscalid induced CYP1A, CYP2B, and CYP3A mRNA and/or increased related activities in PRH and PHH. Species differences in the induction pattern of UGT genes by reference inducers (ß-naphthoflavone [BNF], 5-pregnen-3ß-ol-20-one-16α-carbonitirile [PCN], rifampicin [RIF], and phenobarbital [PB]) and boscalid were seen: UGT1A1, UGT1A3, and UGT1A9 were predominantly induced in PHH, while UGT2B1 was predominantly induced in PRH. Basal activity levels for T4-glucuronidation were very low in humans and an order of magnitude higher in rat, for this reason increases in activities were assessed as delta activity to the control. Significant increases in T4-glucuronidation occurred with boscalid in rat but not in human hepatocytes.


Asunto(s)
Microsomas Hepáticos , Tiroxina , Ratas , Humanos , Animales , Tiroxina/metabolismo , Microsomas Hepáticos/metabolismo , Hepatocitos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , ARN Mensajero/genética , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Inducción Enzimática
7.
Genes Dev ; 29(23): 2490-503, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26637528

RESUMEN

Glucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans. Up-regulation of the SREBP/MDT-15 transcription factor complex was necessary and sufficient for alleviating the life-shortening effect of a glucose-rich diet. Glucose feeding induced key enzymes that convert saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), which are regulated by SREBP and MDT-15. Furthermore, SREBP/MDT-15 reduced the levels of SFAs and moderated glucose toxicity on life span. Our study may help to develop strategies against elevated blood glucose and free fatty acids, which cause glucolipotoxicity in diabetic patients.


Asunto(s)
Envejecimiento/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Dieta , Sacarosa en la Dieta/farmacología , Inducción Enzimática/efectos de los fármacos , Ácido Graso Desaturasas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Glucosa/metabolismo , Glucosa/farmacología , Glucosa/toxicidad , Interferencia de ARN , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Factores de Transcripción/genética
8.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290083

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Neuronas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Proteína Reelina/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Calcio/fisiología , Células Cultivadas , Corteza Cerebral/citología , Inducción Enzimática/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Memoria/fisiología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Picrotoxina/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Proteínas Recombinantes/metabolismo , Proteína Reelina/deficiencia , Proteína Reelina/genética
9.
Antimicrob Agents Chemother ; 66(10): e0227721, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36069614

RESUMEN

Tuberculosis is the most common cause of death in HIV-infected individuals. Rifampin and isoniazid are the backbones of the current first-line antitubercular therapy. The aim of the present study was to describe the time-dependent pharmacokinetics and pharmacogenetics of rifampin and isoniazid and to quantitatively evaluate the drug-drug interaction between rifampin and isoniazid in patients coinfected with HIV. Plasma concentrations of isoniazid, acetyl-isoniazid, isonicotinic acid, rifampin, and 25-desacetylrifampin from 40 HIV therapy-naive patients were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after the first dose and at steady state of antitubercular therapy. Patients were genotyped for determination of acetylator status and CYP2C19 phenotype. Nonlinear mixed-effects models were developed to describe the pharmacokinetic data. The model estimated an autoinduction of both rifampin bioavailability (0.5-fold) and clearance (2.3-fold). 25-Desacetylrifampin clearance was 2.1-fold higher at steady state than after the first dose. Additionally, ultrarapid CYP2C19 metabolizers had a 2-fold-higher rifampin clearance at steady state than intermediate or extensive metabolizers. An induction of isonicotinic acid formation from isoniazid dependent on total rifampin dose was estimated. Simulations indicated a 30% lower isoniazid exposure at steady state during administration of standard rifampin doses than isoniazid exposure in noninduced individuals. Rifampin exposure was correlated with CYP2C19 polymorphism, and rifampin administration may increase exposure to toxic metabolites by isoniazid in patients. Both findings may influence the risk of treatment failure, resistance development, and toxicity and require further investigation, especially with regard to ongoing high-dose rifampin trials.


Asunto(s)
Antituberculosos , Infecciones por VIH , Isoniazida , Rifampin , Tuberculosis , Humanos , Antituberculosos/farmacocinética , Cromatografía Liquida , Citocromo P-450 CYP2C19/genética , Inducción Enzimática , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/microbiología , Isoniazida/farmacocinética , Rifampin/farmacocinética , Espectrometría de Masas en Tándem , Tuberculosis/tratamiento farmacológico , Tuberculosis/virología
10.
Am J Pathol ; 191(12): 2072-2079, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560064

RESUMEN

Bone homeostasis depends on the balance between bone resorption by osteoclasts (OCs) and bone formation by osteoblasts. Bone resorption can become excessive under various pathologic conditions, including rheumatoid arthritis. Previous studies have shown that OC formation is promoted under hypoxia. However, the precise mechanisms behind OC formation under hypoxia have not been elucidated. The present study investigated the role of inducible nitric oxide synthase (iNOS) in OC differentiation under hypoxia. Primary bone marrow cells obtained from mice were stimulated with receptor activator of NF-κB ligand and macrophage colony-stimulating factor to induce OC differentiation. The number of OCs increased in culture under hypoxia (oxygen concentration, 5%) compared with that under normoxia (oxygen concentration, 20%). iNOS gene and protein expression increased in culture under hypoxia. Addition of an iNOS inhibitor under hypoxic conditions suppressed osteoclastogenesis. Addition of a nitric oxide donor to the normoxic culture promoted osteoclastogenesis. Furthermore, insulin-like growth factor 2 expression was significantly altered in both iNOS inhibition experiments and nitric oxide donor experiments. These data might provide clues to therapies for excessive osteoclastogenesis under several hypoxic pathologic conditions, including rheumatoid arthritis.


Asunto(s)
Hipoxia de la Célula/fisiología , Óxido Nítrico Sintasa de Tipo II/fisiología , Osteoclastos/fisiología , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Hipoxia de la Célula/efectos de los fármacos , Células Cultivadas , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/genética , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , omega-N-Metilarginina/farmacología
11.
Blood ; 136(1): 93-105, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32202637

RESUMEN

Inhibition of the B-cell receptor pathway, and specifically of Bruton tyrosine kinase (BTK), is a leading therapeutic strategy in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Target occupancy is a measure of covalent binding to BTK and has been applied as a pharmacodynamic parameter in clinical studies of BTK inhibitors. However, the kinetics of de novo BTK synthesis, which determines occupancy, and the relationship between occupancy, pathway inhibition and clinical outcomes remain undefined. This randomized phase 2 study investigated the safety, efficacy, and pharmacodynamics of a selective BTK inhibitor acalabrutinib at 100 mg twice daily (BID) or 200 mg once daily (QD) in 48 patients with relapsed/refractory or high-risk treatment-naïve CLL. Acalabrutinib was well tolerated and yielded an overall response rate (ORR) of partial response or better of 95.8% (95% confidence interval [CI], 78.9-99.9) and an estimated progression-free survival (PFS) rate at 24 months of 91.5% (95% CI, 70.0-97.8) with BID dosing and an ORR of 79.2% (95% CI, 57.9-92.9) and an estimated PFS rate at 24 months of 87.2% (95% CI, 57.2-96.7) with QD dosing. BTK resynthesis was faster in patients with CLL than in healthy volunteers. BID dosing maintained higher BTK occupancy and achieved more potent pathway inhibition compared with QD dosing. Small increments in occupancy attained by BID dosing relative to QD dosing compounded over time to augment downstream biological effects. The impact of BTK occupancy on long-term clinical outcomes remains to be determined. This trial was registered at www.clinicaltrials.gov as #NCT02337829.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/uso terapéutico , Agammaglobulinemia Tirosina Quinasa/biosíntesis , Agammaglobulinemia Tirosina Quinasa/genética , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Benzamidas/administración & dosificación , Benzamidas/efectos adversos , Esquema de Medicación , Inducción Enzimática , Femenino , Cefalea/inducido químicamente , Enfermedades Hematológicas/inducido químicamente , Humanos , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Dolor/inducido químicamente , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazinas/administración & dosificación , Pirazinas/efectos adversos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , RNA-Seq , Transcriptoma , Resultado del Tratamiento
12.
Drug Metab Dispos ; 50(7): 1000-1001, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504657

RESUMEN

The concept of hepatic induction of drug-metabolizing cytochrome P450s (P450s) by xenobiotics, including therapeutic drugs, was proposed in the early 1960s. A polycyclic aromatic hydrocarbon and phenobarbital have been the two major inducers used to investigate this induction mechanism. Currently, the mechanisms mediated by aryl hydrocarbon receptor and constitutive androstane receptor are well-established. In addition to mammals, insects and fungi also express P450s and induce them following exposure to insecticides. These inductions may have environmental consequences. Finding the molecular mechanism regulating these inductions will be of major interest in the future. SIGNIFICANCE STATEMENT: This paper summarizes present and future of investigations into induction of drug-metabolizing enzymes.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Hígado/metabolismo , Mamíferos/metabolismo , Microsomas Hepáticos/metabolismo , Xenobióticos/farmacología
13.
Drug Metab Dispos ; 50(4): 374-385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094979

RESUMEN

The proteomes of ordered and disordered lipid microdomains in rat liver microsomes from control and phenobarbital (PB)-treated rats were determined after solubilization with Brij 98 and analyzed by tandem mass tag (TMT)-liquid chromatography-mass spectrometry (LC-MS). This allowed characterization of the liver microsomal proteome and the effects of phenobarbital-mediated induction, focusing on quantification of the relative levels of the drug-metabolizing enzymes._The microsomal proteome from control rats was represented by 333 (23%) proteins from ordered lipid microdomains, 517 (36%) proteins from disordered lipid domains, and 587 (41%) proteins that uniformly distributed between lipid microdomains. Most enzymes related to drug metabolism were mainly localized in disordered lipid microdomains. However, cytochrome P450 (CYP) 1A2, multiple forms of CYP2D, and several forms of UDP glucuronosyltransferases (UGT) 1A1 and 1A6) localized to ordered lipid microdomains. Other drug-metabolizing enzymes, including several forms of cytochromes P450, were uniformly distributed between the ordered and disordered regions. The redox partners, NADPH-cytochrome P450 reductase and cytochrome b5, localized to disordered microdomains. PB induction resulted in only modest changes in protein localization. Less than five proteins were variably associated with the ordered and disordered membrane microdomains in PB and control microsomes. PB induction was associated with fewer proteins localizing in the disordered membranes and more being uniformly distributed or localized to ordered domains. Ingenuity Pathway Analysis (IPA) was used to ascertain the effect of PB on cellular pathways, resulting in attenuation of pathways related to energy storage/utilization and overall cellular signaling and an increase in those related to degradative pathways. SIGNIFICANCE STATEMENT: This work identifies the lipid microdomain localization of the proteome from control and phenobarbital-induced rat liver microsomes. Thus, it provides an initial framework to understand how lipid/protein segregation influences protein-protein interactions in a tissue extract commonly used for studies in drug metabolism and uses bioinformatics to elucidate the effects of phenobarbital induction on cellular pathways.


Asunto(s)
Lípidos de la Membrana , Microsomas Hepáticos , Animales , Biología Computacional , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Lípidos de la Membrana/metabolismo , Microsomas Hepáticos/metabolismo , Fenobarbital/metabolismo , Fenobarbital/farmacología , Aceites de Plantas , Polietilenglicoles , Proteómica , Ratas
14.
Drug Metab Dispos ; 50(2): 105-113, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857529

RESUMEN

Screening for cytochrome P450 (CYP) induction potential is routine in drug development. Induction results in a net increase in CYP protein and is assessed typically by measuring indirect endpoints, i.e., enzyme activity and mRNA in vitro. Recent methodological advancements have made CYP protein quantification by liquid chromatography-mass spectrometry in vitro induction studies more accessible and amenable to routine testing. In this study, we evaluated CYP3A4 concentration dependence of induction response for 11 compounds (rifampin, rifabutin, carbamazepine, efavirenz, nitrendipine, flumazenil, pioglitazone, rosiglitazone, troglitazone, pazopanib, and ticagrelor) in plated hepatocytes from two or three donors incorporating in the assessment all three endpoints. In addition, the time-dependence of the induction was examined over 1, 2, or 3 days of treatment. For most compounds, mRNA, enzyme activity, and protein endpoints exhibited similarity in induction responses. Pazopanib and ticagrelor were notable exceptions as neither protein nor enzyme activity were induced despite mRNA induction of a magnitude similar to efavirenz, pioglitazone, or rosiglitazone, which clearly induced in all three endpoints. Static modeling of clinical induction responses supported a role for protein as a predictive endpoint. These data highlight the value of including CYP protein quantification as an induction assay endpoint to provide a more comprehensive assessment of induction liability. SIGNIFICANCE STATEMENT: Direct, liquid chromatography-mass spectrometry (LC-MS)-based quantification of cytochrome P450 (CYP) protein is a desirable induction assay endpoint; however such application has been limited due to inefficient workflows. Here, we incorporate recent advancements in protein quantitation methods to efficiently quantify CYP3A4 protein in in vitro induction assays with 11 compounds in up to 3 donors. The data indicate induction responses from mRNA do not always align with those of protein suggesting assessment of induction liability is more complex than thought previously.


Asunto(s)
Citocromo P-450 CYP3A , Hepatocitos , Células Cultivadas , Cromatografía Liquida/métodos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Hepatocitos/metabolismo , Humanos , Espectrometría de Masas , ARN Mensajero/metabolismo
15.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716244

RESUMEN

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Asunto(s)
Indicán/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/sangre , Quinurenina/fisiología , Terapia Molecular Dirigida , Complicaciones Posoperatorias/enzimología , Insuficiencia Renal Crónica/enzimología , Trombosis/enzimología , Procedimientos Quirúrgicos Vasculares/efectos adversos , Animales , Aorta , Traumatismos de las Arterias Carótidas/complicaciones , Trombosis de las Arterias Carótidas/etiología , Trombosis de las Arterias Carótidas/prevención & control , Medios de Cultivo/farmacología , Inducción Enzimática/efectos de los fármacos , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/efectos de los fármacos , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Insuficiencia Renal Crónica/tratamiento farmacológico , Tromboplastina/metabolismo , Trombosis/sangre , Trombosis/etiología , Trombosis/prevención & control , Triptófano/metabolismo , Uremia/sangre
16.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408925

RESUMEN

In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.


Asunto(s)
Fenobarbital , Xenobióticos , Animales , Bovinos , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Fenobarbital/farmacología , Xenobióticos/metabolismo
17.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269594

RESUMEN

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glutatión/análogos & derivados , Hesperidina/uso terapéutico , Lactoilglutatión Liasa/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Resveratrol/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Quimioterapia Combinada , Inducción Enzimática/efectos de los fármacos , Glutatión/química , Glutatión/uso terapéutico , Glicosilación/efectos de los fármacos , Hesperidina/química , Humanos , Resistencia a la Insulina/fisiología , Lactoilglutatión Liasa/antagonistas & inhibidores , Ratones , Estructura Molecular , Neoplasias Experimentales/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/fisiopatología , Piruvaldehído/química , Piruvaldehído/metabolismo , Resveratrol/química
18.
Am J Physiol Cell Physiol ; 321(4): C585-C595, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34288722

RESUMEN

The peroxisome proliferator-activated receptors (PPARs) are a group of transcription factors belonging to the nuclear receptor superfamily. Since most target genes of PPARs are implicated in lipid and glucose metabolism, regulation by PPARs could be used as a screening tool to identify novel genes involved in lipid or glucose metabolism. Here, we identify Adtrp, a serine hydrolase enzyme that was reported to catalyze the hydrolysis of fatty acid esters of hydroxy fatty acids (FAHFAs), as a novel PPAR-regulated gene. Adtrp was significantly upregulated by PPARα activation in mouse primary hepatocytes, liver slices, and whole liver. In addition, Adtrp was upregulated by PPARγ activation in 3L3-L1 adipocytes and in white adipose tissue. ChIP-SEQ identified a strong PPAR-binding site in the immediate upstream promoter of the Adtrp gene. Adenoviral-mediated hepatic overexpression of Adtrp in diet-induced obese mice caused a modest increase in plasma nonesterified fatty acids but did not influence diet-induced obesity, liver triglyceride levels, liver lipidomic profiles, liver transcriptomic profiles, plasma cholesterol, triglyceride, glycerol, and glucose levels. Moreover, hepatic Adtrp overexpression did not lead to significant changes in FAHFA levels in plasma or liver and did not influence glucose and insulin tolerance. Finally, hepatic overexpression of Adtrp did not influence liver triglycerides and levels of plasma metabolites after a 24-h fast. Taken together, our data suggest that despite being a PPAR-regulated gene, hepatic Adtrp does not seem to play a major role in lipid and glucose metabolism and does not regulate FAHFA levels.


Asunto(s)
Esterasas/biosíntesis , Glucosa/metabolismo , Hepatocitos/enzimología , Metabolismo de los Lípidos , Lípidos/sangre , Proteínas de la Membrana/biosíntesis , Células 3T3-L1 , Adipocitos/enzimología , Animales , Modelos Animales de Enfermedad , Inducción Enzimática , Esterasas/genética , Ayuno/metabolismo , Femenino , Lipidómica , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/metabolismo
19.
Diabetologia ; 64(3): 693-706, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33319325

RESUMEN

AIMS/HYPOTHESIS: Diabetic retinopathy is characterised by retinal neurodegeneration and retinal vascular abnormalities, affecting one third of diabetic patients with disease duration of more than 10 years. Accumulated evidence suggests that serine racemase (SR) and D-serine are correlated with the pathogenesis of diabetic retinopathy and the deletion of the Srr gene reverses neurovascular pathologies in diabetic mice. Since D-serine content is balanced by SR synthesis and D-amino acid oxidase (DAAO) degradation, we examined the roles of DAAO in diabetic retinopathy and further explored relevant therapy. METHODS: Rats were used as a model of diabetes by i.p. injection of streptozotocin at the age of 2 months and blood glucose was monitored with a glucometer. Quantitative real-time PCR was used to examine Dao mRNA and western blotting to examine targeted proteins in the retinas. Bisulphite sequencing was used to examine the methylation of Dao mRNA promoter in the retinas. Intravitreal injection of DAAO-expressing adenovirus (AAV8-DAAO) was conducted one week before streptozotocin administration. Brain specific homeobox/POU domain protein 3a (Brn3a) immunofluorescence was conducted to indicate retinal ganglion cells at 3 months after virus injection. The permeability of the blood-retinal barrier was examined by Evans blue leakage from retinal capillaries. Periodic acid-Schiff staining and haematoxylin counterstaining were used to indicate retinal vasculature, which was further examined with double immunostaining at 7 months after virus injection. RESULTS: At the age of 12 months, DAAO mRNA and protein levels in retinas from diabetic animals were reduced to 66.2% and 70.4% of those from normal (control) animals, respectively. The Dao proximal promoter contained higher levels of methylation in diabetic than in normal retinas. Consistent with the observation, DNA methyltransferase 1 was increased in diabetic retinas. Injection of DAAO-expressing virus completely prevented the loss of retinal ganglion cells and the disruption of blood-retinal barrier in diabetic rats. Diabetic retinas contained retinal ganglion cells at a density of 54 ± 4/mm2, which was restored to 68 ± 9/mm2 by DAAO overexpression, similar to the levels in normal retinas. The ratio between the number of endothelial cells and pericytes in diabetic retinas was 6.06 ± 1.93/mm2, which was reduced to 3.42 ± 0.55/mm2 by DAAO overexpression; the number of acellular capillaries in diabetic retinas was 10 ± 5/mm2, which was restored to 6 ± 2/mm2 by DAAO overexpression, similar to the levels in normal retinas. Injection of the DAAO-expressing virus increased the expression of occludin and reduced gliosis, which were examined to probe the mechanism by which the disrupted blood-retinal barrier in diabetic rats was rescued and retinal neurodegeneration was prevented. CONCLUSIONS/INTERPRETATION: Altogether, overexpression of DAAO before the onset of diabetes protects against neurovascular abnormalities in retinas from diabetic rats, which suggests a novel strategy for preventing diabetic retinopathy. Graphical abstract.


Asunto(s)
Barrera Hematorretinal/enzimología , D-Aminoácido Oxidasa/biosíntesis , Retinopatía Diabética/prevención & control , Células Ganglionares de la Retina/enzimología , Animales , Barrera Hematorretinal/patología , Permeabilidad Capilar , D-Aminoácido Oxidasa/genética , Metilación de ADN , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/enzimología , Retinopatía Diabética/enzimología , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Inducción Enzimática , Masculino , Degeneración Nerviosa , Regiones Promotoras Genéticas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/patología , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo
20.
Circulation ; 141(11): 916-930, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31992066

RESUMEN

BACKGROUND: Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS: We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS: We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS: Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.


Asunto(s)
Ceramidasa Ácida/fisiología , Terapia Genética , Hipoxia/metabolismo , Infarto del Miocardio/metabolismo , ARN Mensajero/uso terapéutico , Esfingolípidos/metabolismo , Ceramidasa Ácida/antagonistas & inhibidores , Ceramidasa Ácida/genética , Animales , Animales Recién Nacidos , Apoptosis , Ceramidas/metabolismo , Cicatriz/patología , Cuerpos Embrioides , Inducción Enzimática , Femenino , Humanos , Hipoxia/etiología , Hipoxia/patología , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación , Masculino , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Transfección , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA