RESUMEN
After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αß T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.
Asunto(s)
Vacuna BCG , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Administración Intravenosa , Vacuna BCG/inmunología , Células T de Memoria , Inmunidad Entrenada , Vacunación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & controlRESUMEN
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vß chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vß and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vß chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Asunto(s)
Linfocitos T CD8-positivos , Diferenciación Celular , Citometría de Flujo , Listeria monocytogenes , Listeriosis , Animales , Diferenciación Celular/inmunología , Ratones , Listeria monocytogenes/inmunología , Linfocitos T CD8-positivos/inmunología , Listeriosis/inmunología , Citometría de Flujo/métodos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Activación de Linfocitos/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunidad Adaptativa , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunologíaRESUMEN
Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae , Animales , Perros , Células de Riñón Canino Madin Darby , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & controlRESUMEN
Vaccines to generate durable humoral immunity against antigenically evolving pathogens such as the influenza virus must elicit antibodies that recognize conserved epitopes. Analysis of single memory B cells from immunized human donors has led us to characterize a previously unrecognized epitope of influenza hemagglutinin (HA) that is immunogenic in humans and conserved among influenza subtypes. Structures show that an unrelated antibody from a participant in an experimental infection protocol recognized the epitope as well. IgGs specific for this antigenic determinant do not block viral infection in vitro, but passive administration to mice affords robust IgG subtype-dependent protection against influenza infection. The epitope, occluded in the pre-fusion form of HA, is at the contact surface between HA head domains; reversible molecular "breathing" of the HA trimer can expose the interface to antibody and B cells. Antigens that present this broadly immunogenic HA epitope may be good candidates for inclusion in "universal" flu vaccines.
Asunto(s)
Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae , Adulto , Animales , Perros , Femenino , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & controlRESUMEN
Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Transportadoras de Casetes de Unión a ATP/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/metabolismo , Células Dendríticas/virología , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Femenino , Aparato de Golgi/inmunología , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/patogenicidad , Activación de Linfocitos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/genéticaRESUMEN
Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.
Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus de la Influenza B , Gripe Humana , Neuraminidasa , Neuraminidasa/inmunología , Humanos , Virus de la Influenza B/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunas contra la Influenza/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Replicación Viral/efectos de los fármacosRESUMEN
Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.
Asunto(s)
Antígenos CD , Linfocitos T CD8-positivos , Memoria Inmunológica , Virus de la Influenza A , Cadenas alfa de Integrinas , Pulmón , Células T de Memoria , Infecciones por Orthomyxoviridae , Animales , Pulmón/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Memoria Inmunológica/inmunología , Cadenas alfa de Integrinas/metabolismo , Virus de la Influenza A/inmunología , Antígenos CD/metabolismo , Células T de Memoria/inmunología , Ratones Endogámicos C57BL , Interferón gamma/metabolismo , Interferón gamma/inmunología , Microscopía Intravital , Monocitos/inmunologíaRESUMEN
The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge. Compositional analysis revealed restricted infection to the respiratory mucosa with stepwise changes in immune and epithelial cell subsets and states. We identified and characterized a rare subset of Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells, which concurrently increased with tissue-resident memory T (TRM)-like cells. Proportionality analysis, cell-cell communication inference, and microscopy underscored the CXCL16-CXCR6 axis between KNIIFE and TRM cells. Secondary influenza challenge induced accelerated and coordinated myeloid and lymphoid responses without epithelial proliferation. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses.
Asunto(s)
Memoria Inmunológica , Células T de Memoria , Mucosa Nasal , Infecciones por Orthomyxoviridae , Animales , Memoria Inmunológica/inmunología , Ratones , Mucosa Nasal/virología , Mucosa Nasal/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Células T de Memoria/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Ratones Endogámicos C57BL , Humanos , Análisis de la Célula Individual , Gripe Humana/inmunología , Gripe Humana/virología , Femenino , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiologíaRESUMEN
Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Vacunación , Animales , Ratones , Humanos , Anticuerpos Antivirales/inmunología , Vacunas contra la Influenza/inmunología , Virus de la Influenza A/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Sustitución de Aminoácidos , Linfocitos B/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Anticuerpos ampliamente neutralizantes/inmunologíaRESUMEN
Despite the prevalence and clinical importance of influenza, its long-term effect on lung immunity is unclear. Here we describe that following viral clearance and clinical recovery, at 1 month after infection with influenza, mice are better protected from Streptococcus pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs) that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a surface phenotype similar to resident AMs but display a unique functional, transcriptional and epigenetic profile that is distinct from resident AMs. In contrast, influenza-experienced resident AMs remain largely similar to naive AMs. Thus, influenza changes the composition of the AM population to provide prolonged antibacterial protection. Monocyte-derived AMs persist over time but lose their protective profile. Our results help to understand how transient respiratory infections, a common occurrence in human life, can constantly alter lung immunity by contributing monocyte-derived, recruited cells to the AM population.
Asunto(s)
Inmunidad Innata/inmunología , Macrófagos Alveolares/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones Neumocócicas/inmunología , Animales , RatonesRESUMEN
Early recruitment of neutrophils from the blood to sites of tissue infection is a hallmark of innate immune responses. However, little is known about the mechanisms by which apoptotic neutrophils are cleared in infected tissues during resolution and the immunological consequences of in situ efferocytosis. Using intravital multiphoton microscopy, we show previously unrecognized motility patterns of interactions between neutrophils and tissue-resident phagocytes within the influenza-infected mouse airway. Newly infiltrated inflammatory monocytes become a chief pool of phagocytes and play a key role in the clearance of highly motile apoptotic neutrophils during the resolution phase. Apoptotic neutrophils further release epidermal growth factor and promote the differentiation of monocytes into tissue-resident antigen-presenting cells for activation of antiviral T cell effector functions. Collectively, these results suggest that the presence of in situ neutrophil resolution at the infected tissue is critical for optimal CD8+ T cell-mediated immune protection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Fagocitos/inmunología , Receptores CCR2/metabolismo , Animales , Presentación de Antígeno , Apoptosis , Movimiento Celular , Células Cultivadas , Humanos , Inmunidad Innata , Microscopía Intravital , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Receptores CCR2/genéticaRESUMEN
Tissue-resident memory T cells (TRM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway TRM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway TRM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce TRM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway TRM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung TRM cell populations and show that local environmental cues altered airway TRM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer TRM cells in the lung.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Epigénesis Genética/inmunología , Memoria Inmunológica/genética , Pulmón/inmunología , Animales , Apoptosis/inmunología , Linfocitos T CD8-positivos/citología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Microambiente Celular/genética , Microambiente Celular/inmunología , Femenino , Pulmón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patologíaRESUMEN
Memory B cells are found in lymphoid and non-lymphoid tissues, suggesting that some may be tissue-resident cells. Here we show that pulmonary influenza infection elicited lung-resident memory B cells (BRM cells) that were phenotypically and functionally distinct from their systemic counterparts. BRM cells were established in the lung early after infection, in part because their placement required local antigen encounter. Lung BRM cells, but not systemic memory B cells, contributed to early plasmablast responses following challenge infection. Following secondary infection, antigen-specific BRM cells differentiated in situ, whereas antigen-non-specific BRM cells were maintained as memory cells. These data demonstrate that BRM cells are an important component of immunity to respiratory viruses such as influenza virus and suggest that vaccines designed to elicit BRM cells must deliver antigen to the lungs.
Asunto(s)
Antígenos Virales/inmunología , Linfocitos B/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Células Plasmáticas/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Inmunidad Humoral , Memoria Inmunológica , Pulmón/virología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Virus de la Influenza A/inmunología , Interferón gamma/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Interferón/inmunología , Animales , Línea Celular , Perros , Femenino , Inmunidad Innata/inmunología , Interleucina-10/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interferón/genética , Receptor de Interferón gammaRESUMEN
The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Nanopartículas/química , Infecciones por Orthomyxoviridae/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/virología , Reacciones Cruzadas/efectos de los fármacos , Reacciones Cruzadas/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Inmunización , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virologíaRESUMEN
Interferon-λ (IFN-λ) acts on mucosal epithelial cells and thereby confers direct antiviral protection. In contrast, the role of IFN-λ in adaptive immunity is far less clear. Here, we report that mice deficient in IFN-λ signaling exhibited impaired CD8+ T cell and antibody responses after infection with a live-attenuated influenza virus. Virus-induced release of IFN-λ triggered the synthesis of thymic stromal lymphopoietin (TSLP) by M cells in the upper airways that, in turn, stimulated migratory dendritic cells and boosted antigen-dependent germinal center reactions in draining lymph nodes. The IFN-λ-TSLP axis also boosted production of the immunoglobulins IgG1 and IgA after intranasal immunization with influenza virus subunit vaccines and improved survival of mice after challenge with virulent influenza viruses. IFN-λ did not influence the efficacy of vaccines applied by subcutaneous or intraperitoneal routes, indicating that IFN-λ plays a vital role in potentiating adaptive immune responses that initiate at mucosal surfaces.
Asunto(s)
Inmunidad Adaptativa/inmunología , Citocinas/inmunología , Inmunidad Mucosa/inmunología , Interleucinas/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/genética , Animales , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Inmunidad Mucosa/efectos de los fármacos , Inmunidad Mucosa/genética , Inmunización/métodos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Interleucinas/administración & dosificación , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Receptores de Interferón/metabolismo , Linfopoyetina del Estroma TímicoRESUMEN
Highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses occasionally infect, but typically do not transmit, in mammals. In the spring of 2024, an unprecedented outbreak of HPAI H5N1 in bovine herds occurred in the USA, with virus spread within and between herds, infections in poultry and cats, and spillover into humans, collectively indicating an increased public health risk1-4. Here we characterize an HPAI H5N1 virus isolated from infected cow milk in mice and ferrets. Like other HPAI H5N1 viruses, the bovine H5N1 virus spread systemically, including to the mammary glands of both species, however, this tropism was also observed for an older HPAI H5N1 virus isolate. Bovine HPAI H5N1 virus bound to sialic acids expressed in human upper airways and inefficiently transmitted to exposed ferrets (one of four exposed ferrets seroconverted without virus detection). Bovine HPAI H5N1 virus thus possesses features that may facilitate infection and transmission in mammals.
Asunto(s)
Enfermedades de los Bovinos , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Virulencia , Animales , Bovinos , Femenino , Humanos , Ratones , Hurones/virología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Humana/transmisión , Gripe Humana/virología , Gripe Humana/epidemiología , Glándulas Mamarias Animales/virología , Ratones Endogámicos BALB C , Leche/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Ácidos Siálicos/metabolismo , Tropismo Viral , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Estados Unidos/epidemiología , Zoonosis Virales , Seroconversión , Máscaras Laríngeas/virologíaRESUMEN
Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.
Asunto(s)
Lesión Pulmonar , Necroptosis , Infecciones por Orthomyxoviridae , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/virología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome de Dificultad Respiratoria/virologíaRESUMEN
Infection with influenza virus induces antibodies to the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To assess the breadth and magnitude of antibody responses, we sequentially infected mice, guinea pigs and ferrets with divergent H1N1 or H3N2 subtypes of influenza virus. We measured antibody responses by ELISA of an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after infection of humans with influenza virus H1N1 or H3N2 and found markedly broad responses and cogent evidence for 'original antigenic sin'. This work will inform the design of universal vaccines against influenza virus and can guide pandemic-preparedness efforts directed against emerging influenza viruses.
Asunto(s)
Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Proteínas del Envoltorio Viral/inmunología , Adolescente , Adulto , Factores de Edad , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Hurones , Cobayas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunoglobulina G/inmunología , Virus de la Influenza A/clasificación , Masculino , Ratones , Persona de Mediana Edad , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Adulto JovenRESUMEN
Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.