RESUMEN
BACKGROUND: Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides. RESULTS: In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside. CONCLUSION: The findings are helpful for genetic improvement of varieties in L.macranthoides.
Asunto(s)
Lonicera , Lonicera/genética , Apigenina , Quempferoles , Perfilación de la Expresión Génica , Flavonoides , Flores/genética , GlucósidosRESUMEN
Melatonin (Mt) functions as a growth regulator and multifunctional signaling molecule in plants, thereby playing a crucial role in promoting growth and orchestrating protective responses to various abiotic stresses. However, the mechanism whereby exogenous Mt protects Lonicera japonica Thunb. (L. japonica) against salt stress has not been fully elucidated. Therefore, this study aimed to elucidate how exogenous Mt alleviates sodium chloride (NaCl) stress in L. japonica seedlings. Salt-sensitive L. japonica seedlings were treated with an aqueous solution containing 150 mM of NaCl and aqueous solutions containing various concentrations of Mt. The results revealed that treatment of NaCl-stressed L. japonica seedlings with a 60 µM aqueous solution of Mt significantly enhanced vegetative plant growth by scavenging reactive oxygen species and thus reducing oxidative stress. The latter was evidenced by decreases in electrical conductivity and malondialdehyde (MDA) concentrations. Moreover, Mt treatment led to increases in the NaCl-stressed L. japonica seedlings' total chlorophyll content, soluble sugar content, and flavonoid content, demonstrating that Mt treatment improved the seedlings' tolerance of NaCl stress. This was also indicated by the NaCl-stressed L. japonica seedlings exhibiting marked increases in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) and in photosynthetic functions. Furthermore, Mt treatment of NaCl-stressed L. japonica seedlings increased their expression of phenylalanine ammonia-lyase 1 (PAL1), phenylalanine ammonia-lyase 2 (PAL2), calcium-dependent protein kinase (CPK), cinnamyl alcohol dehydrogenase (CAD), flavanol synthase (FLS), and chalcone synthase (CHS). In conclusion, our results demonstrate that treatment of L. japonica seedlings with a 60 µM aqueous solution of Mt significantly ameliorated the detrimental effects of NaCl stress in the seedlings. Therefore, such treatment has substantial potential for use in safeguarding medicinal plant crops against severe salinity.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lonicera , Melatonina , Estrés Salino , Plantones , Lonicera/metabolismo , Lonicera/efectos de los fármacos , Lonicera/genética , Lonicera/crecimiento & desarrollo , Melatonina/farmacología , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/genética , Estrés Salino/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cloruro de Sodio/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: The plant microbiome is one of the key determinants of healthy plant growth. However, the complexity of microbial diversity in plant microenvironments in different regions, especially the relationship between subsurface and aboveground microorganisms, is not fully understood. The present study investigated the diversity of soil microorganisms in different regions and the diversity of microorganisms within different ecological niches, and compared soil microorganisms and endophytic microorganisms. METHODS: 16 S and ITS sequencing was used to sequence the soil and endophytes microbiome of honeysuckle. Alpha diversity analysis and principal component analysis (PCoA) were used to study the soil and endophyte microbial communities, and the function of endophyte bacteria and fungi was predicted based on the PICRUST2 process and FUNGuild. RESULTS: In total, there were 382 common bacterial genera and 139 common fungal genera in the soil of different producing areas of honeysuckle. There were 398 common bacterial genera and 157 common fungal genera in rhizosphere soil. More beneficial bacteria were enriched in rhizosphere soil. Endophytic bacteria were classified into 34 phyla and 770 genera. Endophytic fungi were classified into 11 phyla and 581 genera, among which there were significant differences in the dominant genera of roots, stems, leaves, and flowers, as well as in community diversity and richness. Endophytic fungal functions were mainly dominated by genes related to saprophytes, functional genes that could fight microorganisms were also found in KEGG secondary functional genes. CONCLUSION: More beneficial bacteria were enriched in rhizosphere soil of honeysuckle, and the microbial network of the rhizosphere is more complex than that of the soil. Among the tissues of honeysuckle, the flowers have the richest diversity of endophytes. The endogenous dominant core bacteria in each part of honeysuckle plant have a high degree of overlap with the dominant bacteria in soil. Functional prediction suggested that some dominant core bacteria have antibacterial effects, providing a reference for further exploring the strains with antibacterial function of honeysuckle. Understanding the interaction between honeysuckle and microorganisms lays a foundation for the study of growth promotion, quality improvement, and disease and pests control of honeysuckle from the perspective of microorganisms.
Asunto(s)
Bacterias , Endófitos , Hongos , Lonicera , Microbiota , Rizosfera , Microbiología del Suelo , Endófitos/clasificación , Endófitos/genética , Endófitos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Lonicera/microbiología , Biodiversidad , Raíces de Plantas/microbiología , Filogenia , ARN Ribosómico 16S/genética , Suelo/químicaRESUMEN
Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.
Asunto(s)
Ácido Clorogénico , Lonicera , Ácido Clorogénico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Ácido Quínico/metabolismo , Fitomejoramiento , Mapeo CromosómicoRESUMEN
RATIONALE: The volatile organic compounds (VOCs) of Lonicerae Japonicae flos (LJF) and Lonicera flos (LF) play a pivotal role in determining their sensory characteristics, medicinal properties, and subsequent impact on market pricing and consumer preferences. However, the differences and specificity of these VOCs remain obscure. Hence, it is crucial to conduct a comprehensive characterization of the VOCs in LJF and LF and pinpoint their potential differential VOCs. METHODS: In this study, headspace gas chromatography-ion mobility spectrometry (HS-GC/IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) were employed to comprehensively investigate the compositional characteristics and distinctions in VOCs between LJF and LF. Multivariate statistical analysis was used to identify candidate differential VOCs of LJF and LF samples. RESULTS: A total of 54 and 88 VOCs were identified using HS-GC/IMS and HS-SPME-GC/MS analysis, respectively. Primary VOCs detected in LJF include leaf alcohol, (E)-2-hexen-1-ol dimer, 2-octyn-1-ol, and (E)-3-hexen-1-ol. Key VOCs prevalent in LF encompass farnesol, heptanoic acid, octanoic acid, and valeric acid. Multivariate statistical analysis indicates that compounds such as phenethyl alcohol and leaf alcohol were selected as potential VOCs for distinguishing between LJF and LF. CONCLUSION: This research conducted a comprehensive analysis of the fundamental volatile components in both LJF and LF. It subsequently elucidated the distinctions and specificities within their respective VOC profiles. And this study enables differentiation between LJF and LF through the analysis of VOCs, offering valuable insights for enhancing the quality control of both LJF and LF.
Asunto(s)
Lonicera , Extractos Vegetales , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos , Espectrometría de Movilidad Iónica , EtanolRESUMEN
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: ⢠A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. ⢠L. japonica can protect soft-shelled turtle against A. hydrophila infection. ⢠Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Asunto(s)
Lonicera , Animales , Aeromonas hydrophila/genética , Ácido Clorogénico , Proteínas Hemolisinas , Reptiles , Antibacterianos/farmacología , BiopelículasRESUMEN
INTRODUCTION: Lonicerae Japonicae Flos (LJF) is widely used in food and traditional Chinese medicine. To meet demand, Lonicera japonica Thunb. is widely cultivated in many provinces of China. However, reported studies on the quality evaluation of LJF only used a single or a few active components as indicators, which could not fully reflect the quality of LJF. OBJECTIVES: In the present study, we aimed to develop a methodology for comprehensively evaluating the quality of LJF from different origins based on high-performance liquid chromatography (HPLC) fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition. MATERIALS AND METHODS: The HPLC method was developed for fingerprint analysis and was used to determine the contents of 19 components of LJF. To distinguish between samples and identify differential components, similarity analysis, hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis were performed. RESULTS: The HPLC fingerprint was established. Using the developed method, the contents of 19 components recognized in the fingerprint analysis were determined. Samples from different origins could be effectively distinguished. CONCLUSIONS: HPLC fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition is an efficient method for evaluating LJF.
Asunto(s)
Lonicera , Análisis de Componente Principal , Cromatografía Líquida de Alta Presión/métodos , Lonicera/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Análisis por Conglomerados , Control de Calidad , Análisis de los Mínimos Cuadrados , Flores/química , Análisis Discriminante , Extractos VegetalesRESUMEN
Chrysoeriol is an active ingredient derived from the Chinese medicinal herb (CMH) "Lonicerae japonicae flos" in the dried flower bud or bloomed flower of Lonicera japonica Thunberg. Dermatoses are the most common diseases in humans, including eczema, acne, psoriasis, moles, and fungal infections, which are temporary or permanent and may be painless or painful. Topical corticosteroids are widely used in Western medicine, but there are some side effects when it is continuously and regularly utilized in a large dosage. Chrysoeriol is a natural active ingredient, nontoxic, and without any adverse reactions in the treatment of dermatological conditions. METHODS: Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. The pharmacological activities of chrysoeriol from Lonicerae japonicae flos to fight against skin diseases were explained and evaluated through the literature review of either in vitro or in vivo studies. RESULTS: Chrysoeriol decreased the mRNA levels of proinflammatory cytokines IL-6, IL-1ß, and TNF-α. These were transcriptionally regulated by NF-κB and STAT3 to combat skin inflammation. It also showed promising actions in treating many skin ailments including wound healing, depigmentation, photoprotection, and antiaging. CONCLUSION: The cutaneous route is the best delivery approach to chrysoeriol across the skin barrier. However, toxicity, dosage, and safety assessments of chrysoeriol in a formulation or nanochrysoeriol on the human epidermis for application in skin diseases must be further investigated.
Asunto(s)
Lonicera , Enfermedades de la Piel , Lonicera/química , Humanos , Enfermedades de la Piel/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Flores/química , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
Lonicera caerulea L. fruits are a rich source of vitamins, organic acids, and phenolic compounds, which are characterised by their health-promoting properties. The content of bioactive compounds in this fruit may vary depending on the cultivar and the harvest date. This study analysed the effect of applying 5 ppm gaseous ozone for 1, 3, and 5 min on the chemical properties of L. kamtschatica varieties and newly created clones of L. emphyllocalyx for three years of cultivation. The fruits harvested from L. emphyllocalyx, depending on the year of harvest, had significantly larger size and weight compared to L. kamtschatica. On average, the acidity of the L. emphyllocalyx clones was 6% higher than other tested varieties. The average content of ascorbic acid was highest in L. emphyllocalyx clone '21-17'-57.80 mg·100 g-1; the year of harvest will significantly affect the content of vitamin C, reaching the highest level in 2022-53.92 mg·100 g-1. The total content of polyphenols was significantly dependent on the year of cultivation; reaching, on average, 54.8% more in 2022 compared to the rest of the years. The total antioxidant value using the FRAP, DPPH, and ABTS methods varied depending on the variety; exposure to ozone significantly increased the antioxidant value in each case. On the basis of the study, both botanical varieties can be used in food processing. Gaseous ozone exposure can significantly influence chemical composition, increasing the health-promoting value of fruit.
Asunto(s)
Antioxidantes , Frutas , Lonicera , Ozono , Ozono/química , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacología , Frutas/química , Ácido Ascórbico/análisis , Fenoles/análisis , Fenoles/químicaRESUMEN
Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are traditional Chinese herbs that are commonly used and widely known for their medicinal properties and edibility. Although they may have a similar appearance and vary slightly in chemical composition, their effectiveness as medicine and their use in clinical settings vary significantly, making them unsuitable for substitution. In this study, a novel 2 × 3 six-channel fluorescent sensor array is proposed that uses machine learning algorithms in combination with the indicator displacement assay (IDA) method to quickly identify LJF and LF. This array comprises two coumarin-based fluorescent indicators (ES and MS) and three diboronic acid-substituted 4,4'-bipyridinium cation quenchers (Q1-Q3), forming six dynamic complexes (C1-C6). When these complexes react with the ortho-dihydroxy groups of phenolic acid compounds in LJF and LF, they release different fluorescent indicators, which in turn causes distinct fluorescence recovery. By optimizing eight machine learning algorithms, the model achieved 100% and 98.21% accuracy rates in the testing set and the cross-validation predictions, respectively, in distinguishing between LJF and LF using Linear Discriminant Analysis (LDA). The integration of machine learning with this fluorescent sensor array shows great potential in analyzing and detecting foods and pharmaceuticals that contain polyphenols.
Asunto(s)
Lonicera , Lonicera/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Aprendizaje Automático , Cumarinas/química , Cumarinas/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Extractos Vegetales/química , Extractos Vegetales/análisisRESUMEN
Lonicera similis Hemsl. (L. similis) is a promising industrial crop with flowers rich in phenolic compounds. In this study, an ultrasound-assisted extraction (UAE) was designed to extract phenolic compounds from L. similis flowers (LSFs). A contrastive analysis on the phenolic compounds' yield and characterization and the antioxidant activity of the extracts at three harvest stages (PGS I, PGS II, and PGS III) are reported. The results indicate that the optimal conditions are a sonication intensity of 205.9 W, ethanol concentration of 46.4%, SLR of 1 g: 31.7 mL, and sonication time of 20.1 min. Under these optimized conditions, the TPC values at PGS I, PGS II, and PGS III were 117.22 ± 0.55, 112.73 ± 1.68, and 107.33 ± 1.39 mg GAE/g, respectively, whereas the extract of PGS I had the highest TFC (68.48 ± 2.01 mg RE/g). The HPLC analysis showed that chlorogenic acid, rutin, quercetin, isoquercitrin, and ferulic acid are the main components in the phenolic compounds from LSFs, and their contents are closely corrected with the harvest periods. LSF extracts exhibited a better antioxidant activity, and the activity at PGS I was significantly higher than those at PGS II and PGS III. The correlation analysis showed that kaempferol and ferulic acid, among the eight phenolic compounds, have a significant positive correlation with the antioxidant activity, while the remaining compounds have a negative correlation. Minor differences in extracts at the three harvest stages were found through SEM and FTIR. These findings may provide useful references for the optimal extraction method of phenolic compounds from LSFs at three different harvest periods, which will help to achieve a higher phytochemical yield at the optimal harvest stage (PGS I).
Asunto(s)
Antioxidantes , Flores , Lonicera , Fenoles , Extractos Vegetales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Flores/química , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Lonicera/química , Cromatografía Líquida de Alta Presión , Ondas Ultrasónicas , SonicaciónRESUMEN
The study investigated the impact of Lonicera caerulea L. juice matrix modification and drying techniques on powder characteristics. The evaluation encompassed phenolics (514.7-4388.7 mg/100 g dry matter), iridoids (up to 337.5 mg/100 g dry matter), antioxidant and antiglycation capacity, as well as anti-ageing properties of powders produced using maltodextrin, inulin, trehalose, and palatinose with a pioneering role as a carrier. Spray drying proved to be competitive with freeze drying for powder quality. Carrier application influenced the fruit powder properties. Trehalose protected the phenolics in the juice extract products, whereas maltodextrin showed protective effect in the juice powders. The concentrations of iridoids were influenced by the matrix type and drying technique. Antiglycation capacity was more affected by the carrier type in juice powders than in extract products. However, with carrier addition, the latter showed approximately 12-fold higher selectivity for acetylcholinesterase than other samples. Understanding the interplay between matrix composition, drying techniques, and powder properties provides insights for the development of plant-based products with tailored attributes, including potential health-linked properties.
Asunto(s)
Liofilización , Lonicera , Extractos Vegetales , Polvos , Secado por Pulverización , Liofilización/métodos , Polvos/química , Lonicera/química , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/análisis , Jugos de Frutas y Vegetales/análisis , Polisacáridos/química , Polisacáridos/análisis , Fenoles/análisis , Fenoles/químicaRESUMEN
Lonicera macranthoides, the main source of traditional Chinese medicine Lonicerae Flos, is extensively cultivated in Southwest China. However, the quality of L. macranthoides produced in this region significantly varies due to its wide distribution and various cultivation breeds. Herein, 50 Lonicerae Flos samples derived from different breeds of L. macranthoides cultivated in Southwest China were collected for quality evaluation. Six organic acids and three saponin compounds were quantitatively analyzed using HPLC. Furthermore, the antioxidant activity of a portion of samples was conducted with 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging experiments. According to the quantitative results, all samples met the quality standards outlined in the Chinese Pharmacopoeia. The samples from Guizhou, whether derived from unopened or open wild-type breeds, exhibited high quality, while the wild-type samples showed relatively significant fluctuation in quality. The samples from Chongqing and Hunan demonstrated similar quality, whereas those from Sichuan exhibited relatively lower quality. These samples demonstrated significant abilities in clearing ABTS and DPPH radicals. The relationship between HPLC chromatograms and antioxidant activity, as elucidated by multivariate analysis, indicated that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C are active components and can serve as Q-markers for quality evaluation.
Asunto(s)
Antioxidantes , Lonicera , Cromatografía Líquida de Alta Presión/métodos , Lonicera/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , China , Picratos/química , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Ácidos Sulfónicos/química , Ácidos Sulfónicos/antagonistas & inhibidores , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Control de Calidad , Benzotiazoles/química , Saponinas/química , Saponinas/análisis , Extractos VegetalesRESUMEN
A deep eutectic solvent (DES) with the ability to change from hydrophilic to hydrophobic was designed and synthesized and applied to the determination of organophosphorus (OPP) pesticides in honeysuckle dew samples. Choline chloride, phenol, and tetrahydrofuran (THF) were used as the hydrogen bond acceptor, hydrogen bond donor, and demulsifier, respectively. Eight OPP pesticides were extracted by DES coupled with ultrasonic-assisted extraction (UA) and then chromatographed by GC-MS. DES used as an extract solvent has the advantages of high extraction efficiency, low cost, and environmental protection. Furthermore, DES is compatible with GC-MS. The single factor experiment design and Box-Behnken design (BBD) were applied to the optimization of experimental factors, including the type and composition of extraction solvent, type of demulsifier solvent, the volume of DES and THF, pH of sample solution, and ultrasonic time. Under the optimum experimental conditions, the high degree of linearity from 0.1 to 20.0 ng mL-1 (R2 ≥ 0.9989), the limits of detection from 0.014 to 0.051 ng mL-1 (S/N = 3), and the recoveries of analytes from 81.4 to 104.4% with relative standard deviation below 8.6%. In addition, the adsorption mechanism of OPPs on DES was explored by adsorption kinetic studies. These results have demonstrated that the present method has offered an effective, accurate, and sensitive methodology for OPP pesticides in honeysuckle dew samples, and this method provides a reference for the detection of pesticide residues in traditional Chinese medicine.
Asunto(s)
Disolventes Eutécticos Profundos , Microextracción en Fase Líquida , Compuestos Organofosforados , Plaguicidas , Microextracción en Fase Líquida/métodos , Plaguicidas/análisis , Plaguicidas/aislamiento & purificación , Plaguicidas/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Disolventes Eutécticos Profundos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Lonicera/química , Solventes/química , Ondas Ultrasónicas , Límite de DetecciónRESUMEN
Lonicera japonica Thunb. and Lonicera hypoglauca are famous Chinese medicines used for hyperglycemia; however, the specific compounds that contributed to the hypoglycemic activity and mechanism are still unknown. In this study, the antidiabetic activity of L. japonica buds and L. hypoglauca buds, roots, stems, and leaves extracts was primarily evaluated, and the L. japonica buds and L. hypoglauca buds, roots, and stems extracts displayed significant hypoglycemic activity, especially for the buds of L. hypoglauca. A total of 72 high-level compounds, including 9 iridoid glycosides, 12 flavonoids, 34 organic acids, and 17 saponins, were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with the fragmentation pathways of standards from different parts of L. japonica and L. hypoglauca extracts. Among them, 19 metabolites, including 13 saponins, were reported for the first time from both medicines. Seven high-content compounds identified from L. hypoglauca buds extract were further evaluated for hypoglycemic activity. The result indicated that neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C displayed significant antidiabetic activity, especially for isochlorogenic acid A and isochlorogenic acid C, which demonstrated that the five chlorogenic-acid-type compounds were the active ingredients of hypoglycemic activity for L. japonica and L. hypoglauca. The potential mechanism of hypoglycemic activity for isochlorogenic acid A and isochlorogenic acid C was inhibiting the intestinal α-glucosidase activity to block the supply of glucose. This study was the first to clarify the hypoglycemic active ingredients and potential mechanism of L. japonica and L. hypoglauca, providing new insights for the comprehensive utilization of both resources and the development of hypoglycemic drugs.
Asunto(s)
Hipoglucemiantes , Lonicera , Lonicera/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Ratones , Espectrometría de Masas/métodos , Saponinas/farmacología , Saponinas/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/química , Ácido Clorogénico/análisis , Hojas de la Planta/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisisRESUMEN
Using high-performance liquid chromatography (HPLC), the contents of main classes of biologically active polyphenols in leaf extracts were analyzed in the medicinal species Spiraea chamaedryfolia L. (Rosaceae) and Lonicera caerulea subsp. altaica L. (Caprifoliaceae). Their features were studied in relation to the macroelement and trace element contents in soil and phytomass in sites with sporadic occurrence of serpentinites in the Altai Mountains. A total of 16 polyphenolic compounds were identified for the first time in S. chamaedryfolia leaf extracts. Of these, three compounds were attributed to phenol carboxylic acids; ten, to flavonols; two, to flavones; and one was identified as a flavanone. In L. caerulea subsp. altaica, the analysis confirmed the polyphenolic composition measured earlier, including hydroxycinnamic acids, flavonols, and flavones, and identified an additional compound as a flavanone. Species-specific shifts in plant secondary metabolism were found to occur in response to specific edaphic properties and the accumulation of macroelements and trace elements in leaves of plants growing in an area with a natural geochemical anomaly.
Asunto(s)
Lonicera , Hojas de la Planta , Polifenoles , Suelo , Hojas de la Planta/química , Polifenoles/química , Polifenoles/análisis , Lonicera/química , Suelo/química , Cromatografía Líquida de Alta Presión , Extractos Vegetales/químicaRESUMEN
This study aims to explore the molecular regulatory mechanism of the differential accumulation of flavonoids between 'Xianglei' and the wild type of Lonicera macranthoides. The flowers, stems, and leaves of the two varieties of L. macranthoides were collected. Ultra-performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput sequencing(RNA-seq) were employed to screen out the differential flavonoids, key differentially expressed genes(DEGs) and transcription factors(TFs). Fourteen DEGs were randomly selected for verification by qRT-PCR. The results showed that a total of 17 differential flavonoids were obtained, including naringin chalcone, apigenin, and quercetin. The transcriptomic analysis predicted 19 DEGs associated with flavonoids, including 2 genes encoding chitin synthase(CHS) and 3 genes encoding chalcone isomerase(CHI). The regulatory network analysis and weighted gene co-expression network analysis(WGCNA) screen out the key enzyme genes CHS1, FLS1, and HCT regulating the accumulation of flavonoids. MYB12 and LBD4 may be involved in the biosynthesis of flavonoids by regulating the expression of key enzyme genes CHS1, FLS1, and HCT. The qRT-PCR and RNA-seq results were similar regarding the expression patterns of the 14 randomly selected DEGs. This study preliminarily analyzed the transcriptional regulatory mechanism for the differential accumulation of flavonoids in the two varieties of L. macranthoides and laid a foundation for further elucidating the regulatory effects of key enzyme genes and TFs on the accumulation of flavonoids.
Asunto(s)
Flavonoides , Regulación de la Expresión Génica de las Plantas , Lonicera , Metabolómica , Transcriptoma , Lonicera/genética , Lonicera/metabolismo , Lonicera/química , Flavonoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Numerous studies show that Lonicera macranthoides and L. japonica have significant differences in organic matter. However, there is still a lack of research on inorganic elements between them. In this study, a non-targeted elemental metabolomics method was established by inductively coupled plasma mass spectrometry(ICP-MS), so as to compare the overall differences of inorganic elements between L. macranthoides and L. japonica. In addition, the differential markers were screened, and these differential markers were quantitatively analyzed by the targeted method. The non-targeted elemental metabolomics showed that the established mathematical model could reflect the difference in element content between L. macranthoides and L. japonica. Four inorganic elements such as ~(55)Mn, ~(209)Bi, ~(111)Cd, and ~(85)Rb were confirmed as the differential markers of L. macranthoides and L. japonica based on the screening principles of variable importance in the projection(VIP) value>2.0, P<0.01 and fold change(FC) value>1.2 or <0.80. The targeted quantitative results showed that the content of ~(209)Bi in L. japonica was significantly higher than that in L. macranthoides, while ~(55)Mn, ~(111)Cd, and ~(85)Rb in L. macranthoides were significantly higher than that in L. japonica. The non-targeted and targeted elemental metabolomics methods based on ICP-MS can significantly reflect the overall differences in inorganic elements between L. macranthoides and L. japonica. Exploring the differences between them from the perspective of elements can partly reflect the differences in their drug properties and lay a foundation for further study on the quality control mode of inorganic elements in L. macranthoides and L. japonica and their pharmacological effects.
Asunto(s)
Lonicera , Espectrometría de Masas , Metabolómica , Control de Calidad , Lonicera/química , Espectrometría de Masas/métodos , Metabolómica/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisisRESUMEN
This study established an ultrasound-assisted extraction-high performance liquid chromatography method for simulta-neously determinining the content of 11 bioactive compounds including iridoids, phenolic acids, and flavonoids in Lonicera japonica flowers. The flowers at six stages from the rice bud stage(ML) to the golden flower stage(JH) of L. japonica varieties 'Sijuhua' and 'Beihua No.1' in two planting bases in Shandong province were collected. The established method was employed to determine the content of 11 target compounds, on the basis of which the dynamics of active components in L. japonica sampels during different development stages was investigated. The correlation analysis was carried out to reveal the correlations of the content of iridoids, phenolic acids, and flavonoids. Furthermore, the antioxidant activities of samples at different developmental stages were determined, and the relationship between antioxidant activity and chemical components was analyzed by the correlation analysis. The results showed that the total content of the 11 components in 'Sijihua' changed in a "W" pattern from the ML to JH, being the highest at the ML and the second at the slight white stage(EB). The total content of 11 compounds in 'Beihua No.1' was the highest at the ML and decreased gra-dually from the ML to JH. The samples of 'Sijihua' had higher content of iridoids and lower content of phenolic acids than those of 'Beihua No.1'. The content of flavonoids and phenolic acids showed a positive correlation(R~2=0.90, P<0.05) in 'Sijihua' but no obvious correlation in 'Beihua No.1'. The antioxidant activity and phenolic acid content showed positive correlations, with the determination coefficients(R~2) of 0.84(P<0.05) in 'Beihua No.1' and 0.73(P<0.05) in 'Sijihua'. The antioxidant activity of both varieties was the strongest at the ML and the second at the EB. This study revealed that the content dynamics of iridoids, phenolic acids, and flavonoids in 'Sijihua' and 'Beihua No.1' cultivated in Shandong province during different developmental stages. The results indicated that the antioxidant activity of L. japonica flowers was significantly correlated with the content of phenolic acids at different deve-lopmental stages, which provided a basis for determining the optimum harvest time of L. japonica flowers.
Asunto(s)
Antioxidantes , Flavonoides , Flores , Lonicera , Lonicera/química , Lonicera/crecimiento & desarrollo , Lonicera/metabolismo , Flores/química , Flores/crecimiento & desarrollo , Flores/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Antioxidantes/química , China , Flavonoides/análisis , Flavonoides/química , Flavonoides/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo , Metabolismo Secundario , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Iridoides/metabolismo , Iridoides/análisis , Iridoides/químicaRESUMEN
BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.